Objective: To investigate the expression of promyelocytic leukaemia (PML) protein of PML protein in Bowen's disease (BD), skin squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) and explore the role of PML in the pathogenesis of these diseases.
Methods: PML protein in normal skin tissues and lesions of Bowen's disease, SCC and BCC were detected with immunohistochemistry.
Results: Normal skin tissues did not express PML protein. In BCC, PML showed rather low expressions in the skin lesions (8.69% in cell nuclei and 4.35% in cytoplasm). The lesions in BD and SCC (grade I and II) showed obvious overexpression of PML protein in the cell nuclei and cytoplasm, and its expression in the cell nuclei of these lesions was significantly higher than that in grade III-IV SCC.
Conclusion: PML protein may play an important role in the early stage of SCC, and its overexpression may contribute to the carcinogenesis and metastasis of SCC.
Download full-text PDF |
Source |
---|
Int J Mol Sci
January 2025
Department Hamm 1, Hamm-Lippstadt University of Applied Science, 59063 Hamm, Germany.
An obstacle for many microfluidic developments is the fabrication of its structures, which is often complex, time-consuming, and expensive. Additive manufacturing can help to reduce these barriers. This study investigated whether the results of a microfluidic assay for the detection of the promyelocytic leukemia (PML)-retinoic acid receptor α (RARα) fusion protein (PML::RARA), and thus for the differential diagnosis of acute promyelocytic leukemia (APL), could be transferred from borosilicate glass microfluidic structures to additively manufactured fluidics.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA.
Background: Acute promyelocytic leukemia (APL) is characterized by abnormal promyelocytes and t(15;17)(q24;q21) . Rarely, patients may have cryptic or variant rearrangements. All-trans retinoic acid (ATRA)/arsenic trioxide (ATO) is largely curative provided that the diagnosis is established early.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China.
Acute promyelocytic leukemia (APL) is driven by the specific fusion gene PML-RARA produced by chromosomal translocation. Three classic isoforms, L, V, and S, are found in more than 95% of APL patients. However, atypical PML-RARA isoforms are usually associated with uncertain disease progression and treatment prognosis.
View Article and Find Full Text PDFJ Med Virol
January 2025
The Wistar Institute, Philadelphia, Pennsylvania, USA.
Epstein-Barr virus (EBV) is a ubiquitous human ɣ-herpesvirus implicated in various malignancies, including Burkitt's lymphoma and gastric carcinomas. In most EBV-associated cancers, the viral genome is maintained as an extrachromosomal episome by the EBV nuclear antigen-1 (EBNA1). EBNA1 is considered to be a highly stable protein that interacts with the ubiquitin-specific protease 7 (USP7).
View Article and Find Full Text PDFMedicine (Baltimore)
November 2024
Clinical laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.
This study analyzes the laboratory characteristics and prognosis of patients between PML-RARα negative APL and PML-RARα positive APL and compares the differences in order to improve the understanding of this rare APL and guide clinical diagnosis and treatment. A total of 81 patients with newly diagnosed APL based on bone marrow cell morphology were included, with 14 in the PML-RARα gene negative group and 67 in the PML-RARα gene positive group. The sex, age, peripheral blood routine test, coagulation related indicators, bone marrow cell morphology, flow cytometric immunophenotype, abnormal chromosome expression and prognosis of the 2 groups were analyzed and compared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!