The brown sea cucumber fishery is active in the Galapagos Islands since the year 1991 after its collapse in mainland Ecuador. This paper analyzes the Galapagos Sea cucumber fishery over the past decade and the reasons for its management pitfalls and chronic over fishing, and proposes an improved strategy for estimating stock size and harvest potential. Based on the historical distribution of the fishing fleet and past fishery surveys, 15 macrozones were defined; their areas were estimated from the coastline to the 30m isobaths and the numbers of sample replicates per macrozone were calculated for a density estimate precision of +/-25%. Overall stock size was calculated by summing over all macrozones and was multiplied by 0.122 to obtain the annual quota. This multiplier was derived by inserting an exploitation rate of E=0.3 and a published natural mortality value of M=0.17 into Cadimas formula, thereby obtaining a more conservative precautionary quota estimate. Pre-fishery stock densities in 2009 were below the legal threshold value and the fishery remained closed. Mean densities were significantly lower in the deeper (>15m) than in the shallower (<15m) stratum, contrary to fishermen expectations. Through an empirical regression of (log) pre-fishery density versus subsequent annual catch for the period 1998-2008 we found that catches of most years greatly exceeded the here proposed quota explaining the collapsed nature of the stock.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.15517/rbt.v60i2.3912 | DOI Listing |
J Agric Food Chem
January 2025
National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, PR China.
This study aims to reveal the transduction signaling network that triggers sea cucumber () autolysis. The tandem mass tag (TMT) proteomics and transcriptomic techniques were used to analyze expression differences between inhibited and activated sea cucumber autolysis. Flow cytometry was used to identify apoptosis.
View Article and Find Full Text PDFFront Microbiol
December 2024
The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
Identifying the signatures of intestinal dysbiosis caused by common stresses is fundamental to establishing efficient health monitoring strategies for sea cucumber. This study investigated the impact of six common stress experienced frequently in aquaculture on the growth performance, intestinal homeostasis and microbiota of sea cucumber, including thermal (23°C), hypoosmotic (22‰ salinity), ammonium (0.5 mg/L NH -N), and nitrite (0.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China. Electronic address:
Fucosylated chondroitin sulfate (FCS) from Holothuria mexicana (FCS) was selected for investigation because of its intriguing branch features. Selective β-eliminative depolymerization and the bottom-up assembly were performed to unravel that FCS consisted of a {D-GlcA-β1,3-D-GalNAc} backbone and branches of alternating Fuc (55 %) and D-GalNAc-α1,2-L-Fuc (45 %), the highest proportion of disaccharide branch reported to date. In branches, sulfation could occur at every free -OH site except O-3 of GalNAc, being the most complex and various structure features of natural FCS.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2025
Key Laboratory of Mariculture& Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
Apostichopus japonicus is a highly significant marine aquaculture species. Research findings have indicated that male sea cucumbers demonstrate a more rapid growth rate compared to females, underscoring the potential advantages of establishing an all-male population. In this study, we identified a specific protein-coding gene (ORFan) within a 4565 bp male fragment and named it sex determination factor (sdf).
View Article and Find Full Text PDFFoods
December 2024
Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Sciences, Dalian Minzu University, Ministry of Education, Dalian 116600, China.
α-amylase can effectively inhibit the activity of digestive enzymes and alter nutrient absorption. The impact of ovum hydrolysates of sea cucumbers on α-amylase activity was investigated in this study. The protein hydrolysates generated using different proteases (pepsin, trypsin, and neutral protease) and molecular weights (less than 3000 and more than 3000) were investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!