Photosynthetic CO2 assimilation is the carbon source for plant anabolism, including amino acid production and protein synthesis. The biosynthesis of leaf proteins is known for decades to correlate with photosynthetic activity but the mechanisms controlling this effect are not documented. The cornerstone of the regulation of protein synthesis is believed to be translation initiation, which involves multiple phosphorylation events in Eukaryotes. We took advantage of phosphoproteomic methods applied to Arabidopsis thaliana rosettes harvested under controlled photosynthetic gas-exchange conditions to characterize the phosphorylation pattern of ribosomal proteins (RPs) and eukaryotic initiation factors (eIFs). The analyses detected 14 and 11 new RP and eIF phosphorylation sites, respectively, revealed significant CO2-dependent and/or light/dark phosphorylation patterns and showed concerted changes in 13 eIF phosphorylation sites and 9 ribosomal phosphorylation sites. In addition to the well-recognized role of the ribosomal small subunit protein RPS6, our data indicate the involvement of eIF3, eIF4A, eIF4B, eIF4G and eIF5 phosphorylation in controlling translation initiation when photosynthesis varies. The response of protein biosynthesis to the photosynthetic input thus appears to be the result of a complex regulation network involving both stimulating (e.g. RPS6, eIF4B phosphorylation) and inhibiting (e.g. eIF4G phosphorylation) molecular events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3722150PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070692PLOS

Publication Analysis

Top Keywords

translation initiation
12
phosphorylation sites
12
phosphorylation
10
protein synthesis
8
eif phosphorylation
8
photosynthetic
5
protein
5
photosynthetic control
4
control arabidopsis
4
arabidopsis leaf
4

Similar Publications

Background: The recent global pandemic posed extraordinary challenges for healthcare systems. Frontline healthcare workers required focused, immediate, practical, evidence-based instruction on optimal patient care modalities as knowledge evolved around disease management.

Objective: This course was designed to provide knowledge to protect healthcare workers; combat disease spread; and improve patient outcomes.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third most prevalent malignancy and the second leading cause of cancer-related mortality worldwide, with an increasing shift towards younger age of onset. In recent years, there has been increasing recognition of the significance of tRNA-derived small RNAs (tsRNAs), encompassing tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs). Their involvement in regulating translation, gene expression, reverse transcription, and epigenetics has gradually come to light.

View Article and Find Full Text PDF

Early initiation of ceftaroline-based combination therapy for methicillin-resistant Staphylococcus aureus bacteremia.

Ann Clin Microbiol Antimicrob

January 2025

Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health, Charlottesville, Virginia, USA.

Purpose: Monotherapy with vancomycin or daptomycin remains guideline-based care for methicillin-resistant Staphylococcus aureus bacteremia (MRSA-B) despite concerns regarding efficacy. Limited data support potential benefit of combination therapy with ceftaroline as initial therapy. We present an assessment of outcomes of patients initiated on early combination therapy for MRSA-B.

View Article and Find Full Text PDF

CompàreGenome: a command-line tool for genomic diversity estimation in prokaryotes and eukaryotes.

BMC Bioinformatics

January 2025

Technology Park of Sardinia, Bioecopest Srl, SP 55 Km 8.400, Tramariglio, Alghero, SS, Italy.

Background: The increasing availability of sequenced genomes has enabled comparative analyses of various organisms. Numerous tools and online platforms have been developed for this purpose, facilitating the identification of unique features within selected organisms. However, choosing the most appropriate tools can be unclear during the initial stages of analysis, often requiring multiple attempts to match the specific characteristics of the data.

View Article and Find Full Text PDF

Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage.

Nat Cell Biol

January 2025

Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.

Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!