AI Article Synopsis

  • A controlled in vitro culture system for honey bee cells has been developed to study the effects of pathogens, pesticides, and nutritional deficiencies on honey bees.
  • The system involves using honey bee eggs during their development, allowing scientists to establish primary cultures and later create a continuous cell line (AmE-711) that is primarily composed of fibroblast-type cells.
  • This cell line has been characterized and shows promise for future research in areas like honey bee development, genetics, and toxicology.

Article Abstract

A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz's L15 medium and incubated at 32(°)C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711) has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32) and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1) gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10-14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720946PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069831PLOS

Publication Analysis

Top Keywords

honey bee
28
primary cultures
12
cell
8
honey
8
apis mellifera
8
bee cells
8
cell culture
8
bee
7
cells
5
cell resource
4

Similar Publications

Supporting wild bee development with a bacterial symbiont.

J Appl Microbiol

January 2025

Department of Biology, York University, Toronto, Ontario, Canada M3J 1P3.

Aims: Wild bees foster diverse microbiota that may determine survival success of developing larvae. Here, we compare survivorship and microbial communities of Ceratina calcarata small carpenter bees reared from eggs across three treatments: maternally collected control provisions with diverse microbiota, sterile provisions, and probiotic provisions supplemented with a beneficial symbiont, Apilactobacillus kunkeei.

Methods And Results: Survival probability and adult masses differed across treatments, with the probiotic treatment resulting in highest survivorship and masses.

View Article and Find Full Text PDF

Prevalence of pathogens in abnormal honey bees in South Korea, 2020-2023.

J Vet Diagn Invest

January 2025

Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Republic of Korea.

South Korea's beekeeping industry has been facing a major crisis due to colony collapse disorder (CCD), manifesting since the winter of 2021. CCD in South Korea is presumed to be caused by a combination of factors, including an abnormal climate, pesticide use, declining source plants, and increased honey bee diseases. We examined the prevalence of 12 major honey bee () pathogens by sampling 3,707 colonies with abnormal behavior and suspected pathogen infections from 1,378 apiaries nationwide between 2020 and 2023.

View Article and Find Full Text PDF

Stingless bee honey and flowers are functional foods known for their numerous health benefits. Incorporating these functional ingredients into fermented milk can influence the properties of the final product. This study aimed to evaluate the effects of supplementing stingless bee honey (SBH) from and flower extract (CTFE) on the physicochemical and functional characteristics of fermented goat milk.

View Article and Find Full Text PDF

Unlabelled: Commercially reared bees provide economically important pollination services for a diversity of crops. Improving their health is important both to maximise their pollination services and to avoid possible pathogen spillover or spillback with wild pollinators. Diet quality may directly or indirectly affect diverse aspects of bumblebee health, including colony development, individual size and immune health, but the impact of this remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!