Noncovalent chemical/DNA interactions, for example, intercalation and groove-binding, may be more important to genomic integrity than previously appreciated, and there may very well be genotoxic consequences of that binding. It is of importance, then, to develop methods allowing a determination or prediction of such interactions. This would have particular utility in the pharmaceutical industry where genotoxicity is, for the most part, disallowed in new drug entities. We have previously used DNA docking simulations to assess if molecules had structure and charge characteristics which could accommodate noncovalent binding via, for example, electrostatic/hydrogen bonding. We here extend those earlier studies by examining a series of over 1,350 "launched" drugs for ability to noncovalently bind 10 different DNA sequences using two computational programs: Autodock and Surflex. These drugs were also evaluated for binding to the crystallographic ATP-binding site of human topoisomerase II. The results obtained clearly demonstrate multiple series of noncovalent DNA binding structure activity relationships which would not have been predicted based on cursory structural examination. Many drugs within these series are genotoxic although not via any commonly recognized structural covalent alerts. The present studies confirm previously implicated features such as N-dialkyl groups and specific N-aryl ketones as potential genotoxic chemical moieties acting through noncovalent mechanisms. These initial studies provide considerable evidence that DNA intercalation may be an important, largely overlooked, source of drug-induced genotoxicity and further suggest involvement of topoisomerase in that genotoxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/em.21796 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!