Spinal cord injury (SCI) in mammals results in functional deficits that are mostly permanent due in part to the inability of severed axons to regenerate. Several types of growth-inhibitory molecules expressed at the injury site contribute to this regeneration failure. The responses of axons to these inhibitors vary greatly within and between organisms, reflecting axons' characteristic intrinsic propensity for regeneration. In the zebrafish (Danio rerio) many but not all axons exhibit successful regeneration after SCI. This review presents and compares the intrinsic and extrinsic determinants of axonal regeneration in the injured spinal cord in mammals and zebrafish. A better understanding of the molecules and molecular pathways underlying the remarkable individualism among neurons in mature zebrafish may support the development of therapies for SCI and their translation to the clinic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561943PMC
http://dx.doi.org/10.1007/s12264-013-1361-8DOI Listing

Publication Analysis

Top Keywords

spinal cord
12
axonal regeneration
8
cord injury
8
regeneration spinal
4
zebrafish
4
injury zebrafish
4
zebrafish mammals
4
mammals differences
4
differences similarities
4
similarities translation
4

Similar Publications

Spinal cord injury (SCI) remains a formidable challenge in biomedical research, as the silencing of intrinsic regenerative signals in most spinal neurons results in an inability to reestablish neural circuits. In this study, we found that neurons with low axonal regeneration after SCI showed decreased extracellular signal-regulated kinase (ERK) phosphorylation levels. However, the expression of dual specificity phosphatase 26 (DUSP26)─which negatively regulates ERK phosphorylation─was reduced considerably in neurons undergoing spontaneous axonal regeneration.

View Article and Find Full Text PDF

Background: Transanal irrigation is a well-established minimally invasive therapy that addresses symptoms of both constipation and incontinence. The therapy has been extended from just neurogenic bowel dysfunction patients to those with disorders of brain-gut interaction and postsurgical conditions.

Aim: To summarized the literature on transanal irrigation and update the contraindication profile.

View Article and Find Full Text PDF

Comprehensive Analysis Reveals the Potential Diagnostic Value of Biomarkers Associated With Aging and Circadian Rhythm in Knee Osteoarthritis.

Orthop Surg

January 2025

Department of Orthopedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, China.

Objective: Knee osteoarthritis (KOA) is characterized by structural changes. Aging is a major risk factor for KOA. Therefore, the objective of this study was to examine the role of genes related to aging and circadian rhythms in KOA.

View Article and Find Full Text PDF

Holocord syringomyelia in 18 dogs.

Front Vet Sci

January 2025

Pride Veterinary Referrals, IVC Evidensia Group, Derby, United Kingdom.

Holocord syringomyelia (HSM) is characterized by a continuous spinal cord cavitation along its entire length and is currently poorly documented in dogs. This retrospective multicentric case series investigates the clinical and MRI findings in 18 dogs with HSM. The median age at presentation was 82 months (range 9-108 months) and French Bulldogs were overrepresented (50%).

View Article and Find Full Text PDF

Background: Patients with cervical spinal cord injuries (CSCIs) have a high incidence of respiratory complications. The effectiveness of non-invasive positive pressure ventilation (NPPV) in preventing respiratory complications such as pneumonia in acute CSCIs remains unclear. We evaluated whether intermittent NPPV (iNPPV) could prevent pneumonia in patients with acute CSCIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!