Plexiform lesions (PLs), the hallmark of plexogenic pulmonary arterial hypertension (PAH), contain phenotypically altered, proliferative endothelial cells (ECs). The molecular mechanism that contributes to EC proliferation and formation of PLs is poorly understood. We now show that a decrease in intersectin-1s (ITSN-1s) expression due to granzyme B (GrB) cleavage during inflammation associated with PAH and the high p38/Erk1/2(MAPK) activity ratio caused by the GrB/ITSN cleavage products lead to EC proliferation and selection of a proliferative/plexiform EC phenotype. We used human pulmonary artery ECs of PAH subjects (EC(PAH)), paraffin-embedded and frozen human lung tissue, and animal models of PAH in conjunction with microscopy imaging, biochemical, and molecular biology approaches to demonstrate that GrB cleaves ITSN-1s, a prosurvival protein of lung ECs, and generates two biologically active fragments, an N-terminal fragment (GrB-EH(ITSN)) with EC proliferative potential and a C-terminal product with dominant negative effects on Ras/Erk1/2. The proliferative potential of GrB-EH(ITSN) is mediated via sustained phosphorylation of p38(MAPK) and Elk-1 transcription factor and abolished by chemical inhibition of p38(MAPK). Moreover, lung tissue of PAH animal models and human specimens and EC(PAH) express lower levels of ITSN-1s compared with controls and the GrB-EH(ITSN) cleavage product. Moreover, GrB immunoreactivity is associated with PLs in PAH lungs. The concurrent expression of the two cleavage products results in a high p38/Erk1/2(MAPK) activity ratio, which is critical for EC proliferation. Our findings identify a novel GrB-EH(ITSN)-dependent pathogenic p38(MAPK)/Elk-1 signaling pathway involved in the poorly understood process of PL formation in severe PAH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764778PMC
http://dx.doi.org/10.1074/jbc.M113.502674DOI Listing

Publication Analysis

Top Keywords

molecular mechanism
8
plexogenic pulmonary
8
pulmonary arterial
8
arterial hypertension
8
high p38/erk1/2mapk
8
p38/erk1/2mapk activity
8
activity ratio
8
cleavage products
8
lung tissue
8
animal models
8

Similar Publications

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.

View Article and Find Full Text PDF

Crosstalk between non-coding RNAs and programmed cell death in colorectal cancer: implications for targeted therapy.

Epigenetics Chromatin

January 2025

Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.

Background: Colorectal cancer (CRC) remains one of the most common causes of cancer-related mortality worldwide. Its progression is influenced by complex interactions involving genetic, epigenetic, and environmental factors. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been identified as key regulators of gene expression, affecting diverse biological processes, notably programmed cell death (PCD).

View Article and Find Full Text PDF

The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.

View Article and Find Full Text PDF

Transcriptome sequencing reveals regulatory genes associated with neurogenic hearing loss.

BMC Med Genomics

January 2025

Department of Otolaryngology, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, WuHua District, Kunming City, Yunnan Province, China.

Hearing loss is a prevalent condition with a significant impact on individuals' quality of life. However, comprehensive studies investigating the differential gene expression and regulatory mechanisms associated with hearing loss are lacking, particularly in the context of diverse patient samples. In this study, we integrated data from 10 patients across different regions, age groups, and genders, with their data retrieved from a public transcriptome database, to explore the molecular basis of hearing loss.

View Article and Find Full Text PDF

High interstitial fluid pressure enhances USP1-dependent KIF11 protein stability to promote hepatocellular carcinoma progression.

J Transl Med

January 2025

Department of General Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, No.1, Minde Road, Nanchang, 330006, Jiangxi, China.

Background: HCC is characterized by a high interstitial fluid pressure (HIFP) environment, which appears to support cancer cell survival. However, the mechanisms behind this phenomenon are not fully understood.

Methods: This study investigates the role of kinesin family member 11 (KIF11) in HCC under HIFP conditions, using both in vivo and in vitro models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!