Rapid cooling of the amniotic membrane as a model system for the vitrification of posterior corneal lamellae.

Cell Tissue Bank

Laboratory of the Biology and Pathology of the Eye, 1st Faculty of Medicine and General Teaching Hospital in Prague, Institute of Inherited Metabolic Disorders, Charles University in Prague, Ke Karlovu 2, 128 08, Prague 2, Czech Republic.

Published: March 2014

To vitrify human amniotic membrane specimens so that the maximum of epithelial cells survives in order to develop a procedure for the eventual vitrification of posterior corneal lamellae without using cryoprotective agents. To assess different methods of tissue sample preparation preceding vitrification. In group 1, the amniotic membrane specimens were stretched on nitrocellulose support. In group 2, mechanical pressure was used to remove the excess culture medium between the support and the membrane. The samples were frozen in liquid ethane (-183 °C) and stored in liquid nitrogen. The specimens in the control group were not vitrified. Re-warming was performed at 40 °C. The epithelial cell survival rate was assessed after 1, 3 and 7 days of storage following re-warming using calcein and ethidium homodimer-1 fluorescence. A wide range of values was observed among the different groups and among individual specimens within the groups. Resulting average survival rate was 41 % for group 1 and 53 % for group 2; in several samples the cell survival rate exceeded 70 %. The storage period did not significantly affect the survival rates. The results of the rapid cooling of amniotic membranes in liquid ethane indicate that significant percentage of epithelial cells remain viable after the re-warming.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10561-013-9388-7DOI Listing

Publication Analysis

Top Keywords

amniotic membrane
12
survival rate
12
rapid cooling
8
cooling amniotic
8
vitrification posterior
8
posterior corneal
8
corneal lamellae
8
membrane specimens
8
epithelial cells
8
liquid ethane
8

Similar Publications

In the quest for an ideal wound healing material, human amniotic membrane (AM), tilapia skin collagen (TSC), and Centella asiatica (CA) have been studied separately for their healing potential. In this study, we formulated AM, TSC, and CA gel and studied their competency and wound healing efficacy in vivo. Gel was formulated using AM, TSC, CA, Carbopol 934, acrylic acid, glycerine, and triethanolamine and physicochemical properties e.

View Article and Find Full Text PDF

Alginate-Based Hydrogels with Amniotic Membrane Stem Cells for Wound Dressing Application.

Stem Cells Cloning

January 2025

Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.

Objective: Chronic wounds are a common clinical problem that necessitate the exploration of novel regenerative therapies. We report a method to investigate the in vitro wound healing capacity of an innovative biomaterial, which is based on amniotic membrane-derived stem cells (AMSCs) embedded in an alginate hydrogel matrix. The aim of this study was to prepare an sodium alginate-based hydrogel, cross-linked calcium chloride (CaCl with the active ingredient AMSC (AMSC/Alg-H) and to evaluate its in vitro effectiveness for wound closure.

View Article and Find Full Text PDF

Previous studies have explored nanofat stimulating tissue regeneration and maturation, promoting remodeling through its rich content of growth factors and stem cells; however, comprehensive data on its use in full-thickness wounds remains limited. The aim of this study was to evaluate the effectiveness of combining nanofat with freeze-dried human amniotic membrane (FDHAM) for treating full-thickness wounds in a rabbit model. An animal experimental study using a post-test control group design was conducted.

View Article and Find Full Text PDF

Placenta tissue has biological advantages, including anti-inflammatory, anti-bacterial, anti-fibrotic formation, and immunomodulatory properties. The amnion membrane (AM) is an inner side membrane of the placenta that faces the fetus. The main sources of amnion are humans and animals, with bovine being one of the significant sources.

View Article and Find Full Text PDF

Amniotic Tissue Injections Are an Effective Alternative to Corticosteroid Injections for Pain Relief and Function in Patients With Severe Knee Osteoarthritis: A Double-Blind, Randomized, Prospective Study.

J Am Acad Orthop Surg Glob Res Rev

January 2025

From the Steadman Hawkins Clinic of the Carolinas, Prisma Health-Upstate, Greenville, SC (Dr. Pill, Dr. Ahearn, Dr. Siffri, Dr. Burnikel, Dr. Cassas, Dr. Wyland, and Dr. Kissenberth); the Mayo Clinic Arizona, Scottsdale, AZ (Dr. Tokish); the Department of Orthopaedics, Duke University, Durham NC (Dr. Cook); the Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, SC (Dr. Mercuri, Mr. Sawvell, and Mr. Wright); the Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, SC (Dr. Mercuri, Mr. Sawvell, and Mr. Wright); and the Hawkins Foundation, Greenville, SC (Dr. Hutchinson, Dr. Bynarowicz, and Dr. Adams).

Introduction: The use of corticosteroid injections for short-term pain relief for knee osteoarthritis can have deleterious adverse effects. Amniotic tissue has shown promise in vitro; therefore, this study compared a morcellized injectable amniotic tissue allograft to corticosteroid injection.

Methods: Eighty-one patients with symptomatic severe knee osteoarthritis (Kellgren-Lawrence grade 3 to 4) were prospectively randomized to either a double-blinded single injection of BioDRestore (Integra LifeSciences; n = 39) or triamcinolone acetonide (n = 42).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!