The HschiA1 gene of the archaeon Halobacterium salinarum CECT 395 was cloned and overexpressed as an active protein of 66.5 kDa in Escherichia coli. The protein called HsChiA1p has a modular structure consisting of a glycosyl hydrolase family 18 catalytic region, as well as a N-terminal family 5 carbohydrate-binding module and a polycystic kidney domain. The purified recombinant chitinase displayed optimum catalytic activity at pH 7.3 and 40 °C and showed high stability over broad pH (6-8.5) and temperature (25-45 °C) ranges. Protein activity was stimulated by the metal ions Mg(+2), K(+), and Ca(+2) and strongly inhibited by Mn(+2). HsChiA1p is salt-dependent with its highest activity in the presence of 1.5 M of NaCl, but retains 20% of its activity in the absence of salt. The recombinant enzyme hydrolysed p-NP-(GlcNAc)3, p-NP-(GlcNAc), crystalline chitin, and colloidal chitin. From its sequence features and biochemical properties, it can be identified as an exo-acting enzyme with potential interest regarding the biodegradation of chitin waste or its bioconversion into biologically active products.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-013-5124-2DOI Listing

Publication Analysis

Top Keywords

archaeon halobacterium
8
halobacterium salinarum
8
salinarum cect
8
cect 395
8
escherichia coli
8
functional expression
4
expression characterization
4
characterization chitinase
4
chitinase marine
4
marine archaeon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!