We have recently shown that chronic treatment with cannabidiol (CBD) was able to recover memory deficits induced by brain iron loading in a dose-dependent manner in rats. Brain iron accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's and Alzheimer's, and has been related to cognitive deficits in animals and human subjects. Deficits in synaptic energy supply have been linked to neurodegenerative diseases, evidencing the key role played by mitochondria in maintaining viable neural cells and functional circuits. It has also been shown that brains of patients suffering from neurodegenerative diseases have increased expression of apoptosisrelated proteins and specific DNA fragmentation. Here, we have analyzed the expression level of brain proteins involved with mitochondrial fusion and fission mechanisms (DNM1L and OPA1), the main integral transmembrane protein of synaptic vesicles (synaptophysin), and caspase 3, an apoptosis-related protein, to gain a better understanding of the potential of CBD in restoring the damage caused by iron loading in rats. We found that CBD rescued iron-induced effects, bringing hippocampal DNM1L, caspase 3, and synaptophysin levels back to values comparable to the control group. Our results suggest that iron affects mitochondrial dynamics, possibly trigging synaptic loss and apoptotic cell death and indicate that CBD should be considered as a potential molecule with memory-rescuing and neuroprotective properties to be used in the treatment of cognitive deficits observed in neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-013-8514-7DOI Listing

Publication Analysis

Top Keywords

brain iron
12
neurodegenerative diseases
12
caspase synaptophysin
8
rats brain
8
iron loading
8
cognitive deficits
8
iron
5
cannabidiol normalizes
4
normalizes caspase
4
synaptophysin mitochondrial
4

Similar Publications

Sub-Chronic 30 mg/kg Iron Treatment Induces Spatial Cognition Impairment and Brain Oxidative Stress in Wistar Rats.

Biol Trace Elem Res

January 2025

Laboratory Functional Physiology and Bio-Resources Valorisation, Higher Institute of Biotechnology of Beja, University of Jendouba, Avenue Habib Bourguiba BP 382, 9000, Beja, Tunisia.

Iron overload has been shown to have deleterious effects in the brain through the formation of reactive oxygen species, which ultimately may contribute to neurodegenerative disorders. Accordingly, rodent studies have indicated that systemic administration of iron produces excess iron in the brain and results in behavioral and cognitive deficits. To what extent cognitive abilities are affected and which neurobiological mechanisms underlie those deficits remain to be more fully characterized.

View Article and Find Full Text PDF

A Subtype Specific Probe for Targeted Magnetic Resonance Imaging of M2 Tumor-Associated Macrophages in Brain Tumors.

Acta Biomater

January 2025

Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America. Electronic address:

Pro-tumoral M2 tumor-associated macrophages (TAMs) play a critical role in the tumor immune microenvironment (TIME), making them an important therapeutic target for cancer treatment. Approaches for imaging and monitoring M2 TAMs, as well as tracking their changes in response to tumor progression or treatment are highly sought-after but remain underdeveloped. Here, we report an M2-targeted magnetic resonance imaging (MRI) probe based on sub-5 nm ultrafine iron oxide nanoparticles (uIONP), featuring an anti-biofouling coating to prevent non-specific macrophage uptake and an M2-specific peptide ligand (M2pep) for active targeting of M2 TAMs.

View Article and Find Full Text PDF

One of the underlying mechanisms of epilepsy (EP), a brain disease characterized by recurrent seizures, is considered to be cell death. Disulfidptosis, a proposed novel cell death mechanism, is thought to play a part in the pathogenesis of epilepsy, but the exact role is unclear. The gene expression omnibus series (GSE) 33,000 and GSE63808 datasets were used to search for differentially expressed disulfidptosis-related molecules (DE-DRMs).

View Article and Find Full Text PDF

Peripheral blood immune cells from individuals with Parkinson's disease or inflammatory bowel disease share deficits in iron storage and transport that are modulated by non-steroidal anti-inflammatory drugs.

Neurobiol Dis

January 2025

Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA. Electronic address:

Parkinson's Disease (PD) is a multisystem disorder in which dysregulated neuroimmune crosstalk and inflammatory relay via the gut-blood-brain axis have been implicated in PD pathogenesis. Although alterations in circulating inflammatory cytokines and reactive oxygen species (ROS) have been associated with PD, no biomarkers have been identified that predict clinical progression or disease outcome. Gastrointestinal (GI) dysfunction, which involves perturbation of the underlying immune system, is an early and often-overlooked symptom that affects up to 80 % of individuals living with PD.

View Article and Find Full Text PDF

Objective: To evaluate iron deposition patterns in patients with cerebral cavernous malformation-related epilepsy (CRE) using quantitative susceptibility mapping (QSM) for detailed analysis of iron distribution associated with a history of epilepsy and severity.

Methods: This study is part of the Quantitative Susceptibility Biomarker and Brain Structural Property for Cerebral Cavernous Malformation Related Epilepsy (CRESS) cohort, a prospective multicenter study. QSM was used to quantify iron deposition in patients with sporadic cerebral cavernous malformation (CCMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!