We report on the rheological and electrical properties of non-aqueous carbon black (CB) suspensions at equilibrium and under steady shear flow. The smaller the primary particle size of carbon black is, the higher the magnitude of rheological parameters and the conductivity are. The electrical percolation threshold ranges seem to coincide with the strong gel rather than the weak gel rheological threshold ones. The simultaneous measurements of electrical properties under shear flow reveal the well-known breaking-and-reforming mechanism that characterises such complex fluids. The small shear rate breaks up the network into smaller agglomerates, which in turn transform into anisometric eroded ones at very high shear rates, recovering the network conductivity. The type of carbon black, its concentration range and the flow rate range are now precisely identified for optimizing the performance of a redox flow battery. A preliminary electrochemical study for a composite anolyte (CB/Li4Ti5O12) at different charge-discharge rates and thicknesses is shown.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3cp51371hDOI Listing

Publication Analysis

Top Keywords

carbon black
16
non-aqueous carbon
8
black suspensions
8
redox flow
8
electrical properties
8
shear flow
8
flow
5
black
4
suspensions lithium-based
4
lithium-based redox
4

Similar Publications

The remediation of wastewaters contaminated with dyes (discharged mainly from industry) is very important for preserving environmental quality and human health. In this study, a new composite chitosan (CS)-based adsorbent combined with activated carbon (AC) and curcumin (Cur) (abbreviated hereafter as CS/AC@Cur) in three different ratios (12.5%, 25%, and 50%) was synthesized for the removal of anionic [reactive black 5 (RB5)] and cationic [methylene blue (MB)] dyes in single-component or binary systems.

View Article and Find Full Text PDF

Optical properties and photobleaching of wildfire ashes aqueous extracts.

Environ Sci Process Impacts

January 2025

Department of Civil, Environmental and Architectural Engineering, University of Colorado at Boulder, Boulder, 80309, USA.

Wildfires can severely degrade soils and watersheds. Post-fire rain events can leach ashes and altered dissolved organic matter (DOM) into streams, impacting water quality and carbon biogeochemistry. The photochemical properties and persistence of DOM from wildfire ash leachates are not well understood.

View Article and Find Full Text PDF

Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes.

Environ Sci Ecotechnol

January 2025

Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.

Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.

View Article and Find Full Text PDF

Massive Carbon Black Inhalation.

J Community Hosp Intern Med Perspect

January 2025

Departments of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.

Carbon black is the general term for a powdery commercial form of carbon. It can cause adverse health effects after inhalation, ingestion, or dermal contact. Exposure to carbon black particles can have adverse effects on the respiratory system; this exposure usually occurs when people inhale contaminated air in the workplace.

View Article and Find Full Text PDF

Recycling of Post-Consumer Waste Polystyrene Using Commercial Plastic Additives.

ACS Cent Sci

January 2025

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Photothermal conversion can promote plastic depolymerization (chemical recycling to a monomer) through light-to-heat conversion. The highly localized temperature gradient near the photothermal agent surface allows selective heating with spatial control not observed with bulk pyrolysis. However, identifying and incorporating practical photothermal agents into plastics for end-of-life depolymerization have not been realized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!