Improved accuracy and speed in scanning probe microscopy by image reconstruction from non-gridded position sensor data.

Nanotechnology

Lawrence Berkeley National Laboratory, Molecular Foundry, 1 Cyclotron Road, 94720 Berkeley, CA, USA.

Published: August 2013

Scanning probe microscopy (SPM) has facilitated many scientific discoveries utilizing its strengths of spatial resolution, non-destructive characterization and realistic in situ environments. However, accurate spatial data are required for quantitative applications but this is challenging for SPM especially when imaging at higher frame rates. We present a new operation mode for scanning probe microscopy that uses advanced image processing techniques to render accurate images based on position sensor data. This technique, which we call sensor inpainting, frees the scanner to no longer be at a specific location at a given time. This drastically reduces the engineering effort of position control and enables the use of scan waveforms that are better suited for the high inertia nanopositioners of SPM. While in raster scanning, typically only trace or retrace images are used for display, in Archimedean spiral scans 100% of the data can be displayed and at least a two-fold increase in temporal or spatial resolution is achieved. In the new mode, the grid size of the final generated image is an independent variable. Inpainting to a few times more pixels than the samples creates images that more accurately represent the ground truth.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/33/335703DOI Listing

Publication Analysis

Top Keywords

scanning probe
12
probe microscopy
12
position sensor
8
sensor data
8
spatial resolution
8
improved accuracy
4
accuracy speed
4
scanning
4
speed scanning
4
microscopy image
4

Similar Publications

This paper presents, for the first time, a rotary actuator functionalized by an inclined disc rotor that serves as a distal optical scanner for endoscopic probes, enabling side-viewing endoscopy in luminal organs using different imaging/analytic modalities such as optical coherence tomography and Raman spectroscopy. This scanner uses a magnetic rotor designed to have a mirror surface on its backside, being electromagnetically driven to roll around the cone-shaped hollow base to create a motion just like a precessing coin. An optical probing beam directed from the probe's optic fiber is passed through the hollow cone to be incident and bent on the back mirror of the rotating inclined rotor, circulating the probing beam around the scanner for full 360° sideway imaging.

View Article and Find Full Text PDF

Objective: To evaluate the clinical efficacy of clear aligner therapy in patients with severe periodontitis accompanied by pathological tooth displacement in the anterior region.

Methods: This retrospective study analyzed patients diagnosed with severe periodontitis and pathological displacement in the anterior region, who visited both the Periodontics and Orthodontics Departments at Peking University School and Hospital of Stomatology between 2019 and 2022. A total of 26 eligible cases were included in this study.

View Article and Find Full Text PDF

Cd(Se,Te) photovoltaics (PV) are the most widely deployed thin-film solar technology globally, yet continued efficiency improvements are stymied by challenges at the device hole contacts. The inclusion of solution-processed oxide layers such as AlGaO in the contact stack has yielded improved device open-circuit voltages () and fill factors (FF). However, contradictory mechanisms by which these layers improve the device properties have been proposed by the research community.

View Article and Find Full Text PDF

Atomic force microscopy-infrared spectroscopy (AFM-IR) is a photothermal scanning probe technique that combines nanoscale spatial resolution with the chemical analysis capability of mid-infrared spectroscopy. Using this hybrid technique, chemical identification down to the single molecule level has been demonstrated. However, the mechanism at the heart of AFM-IR, the transduction of local photothermal heating to cantilever deflection, is still not fully understood.

View Article and Find Full Text PDF

The aggregation of proteins, peptides and amino acids has been a keen subject of interest owing to their implications in metabolic disorders. In this work, we investigated the self-aggregation of the unmodified aromatic amino acid l-tryptophan (Trp) into unusual spherical microstructures. Using fluorescence spectroscopy and field emission scanning electron microscopy (FE-SEM), we detail the time-dependent transformation of monomeric tryptophan into spherical aggregates with distinct fluorescence characteristics (λ = 345 nm, λ = 430 nm) compared to the monomer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!