Hypothalamic plasticity of neuropeptide Y is lacking in brain-type creatine kinase double knockout mice with defective thermoregulation.

Eur J Pharmacol

Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands. Electronic address:

Published: November 2013

The neural substrate of adaptive thermoregulation in mice lacking both brain-type creatine kinase isoforms is further investigated. The cytosolic brain-type creatine kinase (CK-B) and mitochondrial ubiquitous creatine kinase (UbCKmit) are expressed in neural cells throughout the central and peripheral nervous system, where they have an important role in cellular energy homeostasis. Several integral functions appear altered when creatine kinases are absent in the brain (Jost et al., 2002; Streijger et al., 2004, 2005), which has been explained by inefficient neuronal transmission. The CK--/-- double knockout mice demonstrate every morning a body temperature drop of ~1.0 °C, and they have impaired thermogenesis, as revealed by severe hypothermia upon cold exposure. This defective thermoregulation is not associated with abnormal food intake, decreased locomotive activity, or increased torpor sensitivity. Although white and brown adipose tissue fat pads are diminished in CK--/-- mice, intravenous norepinephrine infusion results in a normal brown adipose tissue response with increasing core body temperatures, indicating that the sympathetic innervation functions correctly (Streijger et al., 2009). This study revealed c-fos changes following a cold challenge, and that neuropeptide Y levels were decreased in the paraventricular nucleus of wildtype, but not CK--/--, mice. A reduction in hypothalamic neuropeptide Y is coupled to increased uncoupling protein 1 expression in brown adipose tissue, resulting in thermogenesis. In CK--/-- mice the neuropeptide Y levels did not change. This lack of hypothalamic plasticity of neuropeptide Y might be the result of inefficient neuronal transmission or can be explained by the previous observation of reduced circulating levels of leptin in CK--/-- mice.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2013.07.027DOI Listing

Publication Analysis

Top Keywords

creatine kinase
16
ck--/-- mice
16
brain-type creatine
12
brown adipose
12
adipose tissue
12
hypothalamic plasticity
8
plasticity neuropeptide
8
lacking brain-type
8
double knockout
8
knockout mice
8

Similar Publications

Background: Acute ischemia in the hind extremities is a dangerous disease that causes irreversible damage. Revascularization procedures are important to prevent muscle damage, but these treatments may induce additional damage, also known as ischemia-reperfusion injury. The role of free radicals as pivotal mediators of ischemia-reperfusion injury remains a prominent hypothesis.

View Article and Find Full Text PDF

Effectiveness and Safety of IVIG for the Treatment of HMGCR Immune-Mediated Necrotizing Myopathy.

Muscle Nerve

December 2024

Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Introduction/aims: Immune-mediated necrotizing myopathy (IMNM) is an autoimmune myopathy. We aimed to compare clinical outcomes in patients with antibodies against 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) treated on immunotherapy regimens with and without maintenance intravenous immunoglobulin (IVIG). The secondary aim was to assess outcomes in a subset that received IVIG monotherapy.

View Article and Find Full Text PDF

Role of del Nido Cardioplegia Solution in Prolonged Aortic Cross-clamp Cardiac Surgery: A Prospective Study.

J Cardiothorac Vasc Anesth

December 2024

Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Objectives: The myocardial-protective effect of del Nido cardioplegia solution was evaluated in adult patients undergoing prolonged aortic cross-clamping during cardiac surgery.

Design: Prospective cohort.

Setting: Single-center tertiary academic medical center.

View Article and Find Full Text PDF

Muscle and tendon injuries are prevalent occurrences during sports activities. Platelet-rich plasma (PRP) is known for its rich content of factors essential for wound healing, inflammation reduction, and tissue repair. Despite its recognized benefits, limited information is available regarding PRP's effectiveness in addressing combined surgical injuries to the gastrocnemius muscle and Achilles tendon.

View Article and Find Full Text PDF

SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis.

Cardiovasc Toxicol

December 2024

Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.

Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!