The prohormone convertases, PC1/3 and PC2 are thought to be responsible for the activation of many prohormones through processing including the endogenous opioid peptides. We propose that maintenance of hormonal homeostasis can be achieved, in part, via alterations in levels of these enzymes that control the ratio of active hormone to prohormone. In order to test the hypothesis that exogenous opioids regulate the endogenous opioid system and the enzymes responsible for their biosynthesis, we studied the effect of short-term morphine or naltrexone treatment on pituitary PC1/3 and PC2 as well as on the level of pro-opiomelanocortin (POMC), the precursor gene for the biosynthesis of the endogenous opioid peptide, β-endorphin. Using ribonuclease protection assays, we observed that morphine down-regulated and naltrexone up-regulated rat pituitary PC1/3 and PC2 mRNA. Immunofluorescence and Western blot analysis confirmed that the protein levels changed in parallel with the changes in mRNA levels and were accompanied by changes in the levels of phosphorylated cyclic-AMP response element binding protein. We propose that the alterations of the prohormone processing system may be a compensatory mechanism in response to an exogenous opioid ligand whereby the organism tries to restore its homeostatic hormonal milieu following exposure to the opioid, possibly by regulating the levels of multiple endogenous opioid peptides and other neuropeptides in concert.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787842 | PMC |
http://dx.doi.org/10.1016/j.peptides.2013.07.006 | DOI Listing |
Chin J Integr Med
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Objective: To elucidate the effect of Huanglian-Renshen-Decoction (HRD) on ameliorating type 2 diabetes mellitus by maintaining islet β -cell identity through regulating paracrine and endocrine glucagon-like peptide-1 (GLP-1)/GLP-1 receptor (GLP-1R) in both islet and intestine.
Methods: The db/db mice were divided into the model (distilled water), low-dose HRD (LHRD, 3 g/kg), high-dose HRD (HHRD, 6 g/kg), and liraglutide (400 µ g/kg) groups using a random number table, 8 mice in each group. The db/m mice were used as the control group (n=8, distilled water).
Front Public Health
November 2024
Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia.
Introduction: Over the years eastern Slovakia has been subject to consistent monitoring of high levels of polychlorinated biphenyls (PCBs) in both the environment and human populations attributed to the former production of PCBs at the Chemko Strážske plant. We aimed to investigate the extent to which dietary habits and residential location could affect the concentrations of PCBs in the blood serum samples of subjects.
Methods: We enrolled 602 adult subjects from eastern Slovakia with an average age of 45.
J Gerontol A Biol Sci Med Sci
December 2024
TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany.
J Histochem Cytochem
September 2024
Downstate Health Sciences University, Brooklyn, New York (GT).
Processing of proglucagon into glucagon-like peptide-1 (GLP-1) and GLP-2 in intestinal L cells is mediated by the prohormone convertase 1/3 (PC1/3) while PC2 is responsible for the synthesis of glucagon in pancreatic alpha cells. While GLP-1 is also produced by alpha cells, the identity of the convertase involved in its synthesis is still unsettled. It also remains to be determined whether all alpha cells produce the incretin.
View Article and Find Full Text PDFEndocrinology
November 2023
Integrative Omics, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
Altered prohormone processing, such as with proinsulin and pro-islet amyloid polypeptide (proIAPP), has been reported as an important feature of prediabetes and diabetes. Proinsulin processing includes removal of several C-terminal basic amino acids and is performed principally by the exopeptidase carboxypeptidase E (CPE), and mutations in CPE or other prohormone convertase enzymes (PC1/3 and PC2) result in hyperproinsulinemia. A comprehensive characterization of the forms and quantities of improperly processed insulin and other hormone products following Cpe deletion in pancreatic islets has yet to be attempted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!