Brain development is a complex phenomenon in which several stages of production, maturation, and organization of neural cells in a network succeed each other. Various environmental factors can disrupt these stages. During the last decade, numerous in vitro and in vivo experimental studies in newborn animal models have established the neurotoxic effects of most anesthetic and sedative drugs used in pediatrics. These effects are essentially responsible for neuronal apoptosis and have been associated with learning disorders in adulthood. This neurotoxicity is time-varying: there is a vulnerability period during synaptogenesis. These toxic effects were attributed to agonist properties on GABA receptors or antagonist properties on NMDA receptors, which are characteristics of all implicated anesthetics. Excessive activation of the GABA pathway and/or excessive inhibition of the NMDA pathway activate cellular mechanisms leading to apoptosis. The intensity of neurotoxic effects is dose- and time-exposure-dependent. These numerous experimental data must be interpreted with caution with regard to their validity in humans, mainly because of interspecies differences as well as differences between experimental conditions and clinical practice. Today, these data are insufficient to change our practices, taking into account the indisputable benefits of the use of anesthetics and sedative drugs. However, progress in experimental research will help us identify the safest therapeutic strategies and neuroprotective treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arcped.2013.06.023 | DOI Listing |
Mol Neurobiol
January 2025
School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001, People's Republic of China.
Growing evidence suggests that plant compounds are emerging as a tremendous source for slowing the onset and progression of Alzheimer's disease (AD). Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid with some hypoglycemic, anticancer, and antiinflammatory activities. However, the pharmacological effects of UNA on AD are still unknown.
View Article and Find Full Text PDFNeotrop Entomol
January 2025
Depto de Biologia Geral, Univ Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
Caterpillars of the genus Spodoptera are the main pests in soybean and cotton crops and Spodoptera cosmioides causes more severe losses than other caterpillars in these agricultural crops. However, there are few recommended insecticides for controlling this pest. Lambda-cyhalothrin is a pyrethroid used to control a wide spectrum of arthropods including lepidopterans.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China. Electronic address:
The application of metal-organic frameworks (MOFs) has garnered significant attention in contemporary research. However, the impacts of MOFs on aquatic environments remain largely unclear. This study revealed that the water stability of ZIF-8 is influenced by its concentration, with lower concentrations resulting in higher percentages of Zn release.
View Article and Find Full Text PDFTransplant Cell Ther
January 2025
Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.
Background: While immune effector cell-associated neurotoxicity syndrome (ICANS) is a well-defined adverse effect associated with chimeric antigen receptor-modified T cell (CAR-T) therapy, some patients develop prolonged neurologic symptoms. Few studies have examined characteristics and outcomes of patients who develop such symptoms.
Objective: To provide an analysis of patients who developed ICANS in a single-center cohort of patients with large B-cell lymphoma (LBCL) who received commercial CAR-T and compare characteristics and outcomes between patients with vs.
Annu Rev Pharmacol Toxicol
January 2025
Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; email:
Toluene intoxication constitutes a persistent public health problem worldwide. While most organs can be damaged, the brain is a primary target whether exposure is accidental, occupational, or recreational. Interventions to prevent/revert brain damage by toluene are curtailed by the scarce information on the molecular targets and mechanisms mediating toluene's brain toxicity and the common exposure to other neurotoxins and/or coexistence of neurological/psychiatric disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!