IFN-γ-induced IL-27 and IL-27p28 expression are differentially regulated through JNK MAPK and PI3K pathways independent of Jak/STAT in human monocytic cells.

Immunobiology

Department of Pathology and Laboratory Medicine, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada. Electronic address:

Published: January 2014

IL-27, a member of the IL-12 cytokine family, is a key immunoregulatory cytokine produced predominantly by monocytic cells and mediates innate and adaptive immune responses. IL-27 has been shown to be produced by human monocytic cells primed with IFN-γ and in response to a second stimulus such as LPS. In this study, we show for the first time that IFN-γ alone without any second stimulus can induce IL-27p28 gene expression and IL-27 protein production by human monocytic cells. The signaling pathways that govern IL-27 production in general, and particularly following stimulation of monocytic cells with IFN-γ are not known. We investigated the signaling pathways governing the regulation of IL-27 protein and its subunit IL-27p28 following stimulation with IFN-γ in primary human monocytic cells. Our results suggest that IFN-γ-mediated IL-27 protein but not IL-27p28 gene expression is positively regulated by the C-Jun N-terminal kinases (JNK), mitogen-activated protein kinases (MAPKs) and the phosphoinositide 3-kinase (PI3K), independent of the Janus kinase (Jak)/signal transducers and activators of transcription (STAT) signaling in primary human monocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imbio.2013.06.001DOI Listing

Publication Analysis

Top Keywords

monocytic cells
24
human monocytic
16
il-27 protein
12
second stimulus
8
il-27p28 gene
8
gene expression
8
signaling pathways
8
primary human
8
monocytic
6
cells
6

Similar Publications

Background: The mechanism underlying chronic drug-induced liver injury (DILI) remains unclear. Immune activation is a common feature of DILI progression and is closely associated with metabolism. We explored the immunometabolic profile of chronic DILI and the potential mechanism of chronic DILI progression.

View Article and Find Full Text PDF

Hypothermic oxygenated machine perfusion (HOPE) has emerged as a critical innovation in liver transplantation (LTx), offering significant protection against ischemia-reperfusion injury (IRI). This study focuses on quantifying and characterizing immune cells flushed out during HOPE to explore its effects on graft function and post-transplant outcomes. Fifty liver grafts underwent end-ischemic HOPE.

View Article and Find Full Text PDF

Brain-derived neurotropic factor (BDNF) is expressed by skeletal muscle as a myokine. Our previous work showed that the active precursor, proBDNF, is the predominant form of BDNF expressed in skeletal muscle, and that following skeletal muscle injury, proBDNF levels are significantly increased. However, the function of the muscle-derived proBDNF in injury-induced inflammation has yet to be fully understood.

View Article and Find Full Text PDF

The Role of Bone Marrow Stromal Cell Antigen 2 (BST2) in the Migration of Dendritic Cells to Lymph Nodes.

Int J Mol Sci

December 2024

College of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.

Bone marrow stromal antigen 2 (BST2) is a host-restriction factor that plays multiple roles in the antiviral defense of innate immune responses, including the inhibition of viral particle release from virus-infected cells. BST2 may also be involved in the endothelial adhesion and migration of monocytes, but its importance in the immune system is still unclear. Immune cell adhesion and migration are closely related to the initiation of immune responses.

View Article and Find Full Text PDF

Sepsis is a risk factor associated with increasing neonatal morbidity and mortality, acute lung injury, and chronic lung disease. While stem cell therapy has shown promise in alleviating acute lung injury, its effects are primarily exerted through paracrine mechanisms rather than local engraftment. Accumulating evidence suggests that these paracrine effects are mediated by mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs), which play a critical role in immune system modulation and tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!