Objective: To analyze biomechanical, histologic, and histochemical properties of anterior fragments of abdominal aortic aneurysms (AAA) and to correlate them with the maximum transverse diameter (MTD) and symptoms associated to the aneurysms.

Methods: Fragments of the anterior aneurysm wall were obtained from 90 patients submitted to open repair of AAA of degenerative etiology from 2004 to 2009 in the Clinics Hospital of São Paulo University Medical School. Two specimens were produced from the fragments: one for histologic analysis for quantification of collagen fibers, elastic fibers, smooth muscle cells, and degree of inflammatory activity and the other for uniaxial tensile test to assess biomechanical failure properties of the material, such as strength, tension, and stress. Cases were classified according to symptoms and to the AAA MTD.

Results: Fragments from AAA with MTD < 5.5 cm showed higher values for biomechanical failure properties than those of AAA with MTD < 5.5 cm (strength, 5.32 ± 2.07 × 4.1 ± 2.41 N; tension, 13.83 ± 5.58 × 10.82 ± 6.48 N/cm; stress, 103.02 × 77.03 N/cm(2); P < .05). No differences were observed between the groups in relation to failure strain (0.41 ± 0.12 × 0.37 ± 0.14; P = .260) and thickness of the fragments (1.58 ± 0.41 × 1.53 ± 0.42 mm; P = .662). The average values of fiber compositions of all the fragments were as follows: collagen fibers, 44.34 ± 0.48% and 61.85 ± 10.14% (Masson trichrome staining and Picrosirius red staining, respectively); smooth muscle cells, 3.46 ± 2.23% (immunohistochemistry/alpha-actin); and elastic fibers, less than 1% (traces) (Verhoeff-van Gieson staining). No differences in fiber percentages (collagen, elastic, and smooth muscle) were observed in fragments from AAA with MTD <5.5 cm and <5.5 cm, but more intense inflammatory activity was seen in larger AAA (grade 3; 70% × 28.6%; P = .011). Compared with asymptomatic aneurysms, symptomatic aneurysms showed no differences in the biomechanical failure properties (strength, 5.32 ± 2.36 × 4.65 ± 2.05 N; P = .155; tension, 14.08 ± 6.11 × 12.81 ± 5.77 N/cm; P = .154; stress, 103.02 × 84.76 N/cm(2); P = .144), strain (0.38 ± 0.12 × 0.41 ± 0.13; P = .287), thickness of the fragments (1.56 ± 0.41 × 1.57 ± 0.41 mm; P = .848), and histologic composition (collagen fibers, 44.67 ± 11.17 × 44.02 ± 13.79%; P = .808; smooth muscle fibers, 2.52 × 2.35%; P = .751; elastic fibers, <1%)

Conclusions: Fragments of the anterior wall from larger aneurysms were more resistant than those from smaller AAA, with no tissue properties that could explain this phenomenon in the histologic or histochemical analyses utilized.

Clinical Relevance: The fragments of the anterior midsection from larger aneurysms were more resistant than those from smaller abdominal aortic aneurysms, with no tissue properties that could explain this phenomenon in the histologic or histochemical analyses. Larger aneurysms, at least in this place may be stronger than smaller aneurysms. It could point toward regional differences (heterogeneity, localized pathologies) as an important player in aneurysm rupture. Uniaxial strain tests are an important tool for the comprehension of a complex behavior such as that from an aneurysmal aortic wall. However, these tests still have limitations in providing information that would allow the calculation of the risk of rupture for abdominal aortic aneurysms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvs.2013.04.064DOI Listing

Publication Analysis

Top Keywords

smooth muscle
12
aaa mtd
12
histologic histochemical
8
fragments
8
abdominal aortic
8
aortic aneurysms
8
collagen fibers
8
elastic fibers
8
muscle cells
8
biomechanical failure
8

Similar Publications

Multi-disciplinary treatment of broncho-esophageal fistula in a high-risk single-lung patient.

J Cardiothorac Surg

January 2025

Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway.

Background: A broncho-esophageal fistula (BEF) is a medical and surgical disaster. Treatment of BEF is often limited to palliative stent treatment that may migrate or cause erosions and tissue necrosis. Surgical repair of BEF is the only established definite treatment.

View Article and Find Full Text PDF

Three symptomatic cases of myoma uteri in adolescence, one of which is STUMP tumor.

J Pediatr Adolesc Gynecol

January 2025

Department of Obstetrics and Gynecology, University of Health Sciences, Bagcilar Training and Research Hospital, Istanbul, Turkey. Electronic address:

Article Synopsis
  • Uterine leiomyomas, although rare in adolescents, can present with symptoms like abnormal bleeding and pelvic pain, with smooth muscle tumors of unknown malignant potential (STUMP) being even rarer.
  • In a hospital case study, three 19-year-old patients presented with significant symptoms, leading to the identification of varying sizes of uterine myomas; one was diagnosed as a STUMP tumor while the others were benign fibroids.
  • Despite their rarity, it is important for healthcare providers to consider uterine myomas and STUMP tumors as potential diagnoses in young patients experiencing pelvic symptoms.
View Article and Find Full Text PDF

Uterine fibroids are benign monoclonal neoplasms of the myometrium, representing the most common female pelvic neoplasms globally. Treatments may be invasive, such as hysterectomy and myomectomy, non-invasive, such as medical therapy or focused ultrasound, or minimally invasive, such as transcervical radiofrequency ablation (TFA). To date, more than 12,000 women have been treated worldwide using TFA with the Sonata System.

View Article and Find Full Text PDF

Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.

View Article and Find Full Text PDF

The prevalence of cardiovascular disease varies with sex, and the impact of intrinsic sex-based differences on vasculature is not well understood. Animal models can provide important insights into some aspects of human biology; however, not all discoveries in animal systems translate well to humans. To explore the impact of chromosomal sex on proteomic phenotypes, we used iPSC-derived vascular smooth muscle cells from healthy donors of both sexes to identify sex-based proteomic differences and their possible effects on cardiovascular pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!