Intracortical electrodes record neural signals directly from local populations of neurons in the brain, and conduct them to external electronics that control prosthetics. However, the relationship between electrode design, defined by shape, size and tethering; and long-term (chronic) stability of the neuron-electrode interface is poorly understood. Here, we studied the effects of various commercially available intracortical electrode designs that vary in shape (cylindrical, planar), size (15 μm, 50 μm and 75 μm), and tethering [electrode connections to connector with (tethered) and without tethering cable (untethered)] using histological, transcriptomic, and electrophysiological analyses over acute (3 day) and chronic (12 week) timepoints. Quantitative analysis of histological sections indicated that Michigan 50 μm (M50) and Michigan tethered (MT) electrodes induced significantly (p < 0.01) higher glial scarring, and lesser survival of neurons in regions of blood-brain barrier (BBB) breach when compared to microwire (MW) and Michigan 15 μm (M15) electrodes acutely and chronically. Gene expression analysis of the neurotoxic cytokines interleukin (Il)1 (Il1α, Il1β), Il6, Il17 (Il17a, Il17b, Il17f), and tumor necrosis factor alpha (Tnf) indicated that MW electrodes induced significantly (p < 0.05) reduced expression of these transcripts when compared to M15, M50 and FMAA electrodes chronically. Finally, electrophysiological assessment of electrode function indicated that MW electrodes performed significantly (p < 0.05) better than all other electrodes over a period of 12 weeks. These studies reveal that intracortical electrodes with smaller size, cylindrical shape, and without tethering cables produce significantly diminished inflammatory responses when compared to large, planar and tethered electrodes. These studies provide a platform for the rational design and assessment of chronically functional intracortical electrode implants in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2013.07.016DOI Listing

Publication Analysis

Top Keywords

intracortical electrode
12
electrodes
9
electrode design
8
intracortical electrodes
8
μm μm
8
michigan μm
8
tethered electrodes
8
electrodes induced
8
indicated electrodes
8
electrode
5

Similar Publications

Intracortical microstimulation (ICMS) of somatosensory cortex evokes tactile sensations whose properties can be systematically manipulated by varying stimulation parameters. However, ICMS currently provides an imperfect sense of touch, limiting manual dexterity and tactile experience. Leveraging our understanding of how tactile features are encoded in the primary somatosensory cortex (S1), we sought to inform individuals with paralysis about local geometry and apparent motion of objects on their skin.

View Article and Find Full Text PDF

Devices for the electrical stimulation of the olfactory system: A review.

Biosens Bioelectron

March 2025

Laboratory of Microsystems LMIS1, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.

The loss of olfactory function has a profound impact on quality of life, affecting not only sensory perception but also memory, emotion, and overall well-being. Despite this, advancements in olfactory prostheses have lagged significantly behind those made for vision and hearing restoration. This review offers a comprehensive analysis of the current state of devices for electrical stimulation of the olfactory system.

View Article and Find Full Text PDF

Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays.

View Article and Find Full Text PDF

Pigs as a translational animal model for the study of peak alpha frequency.

Neuroscience

January 2025

Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.

The most characteristic feature of the human electroencephalogram is the peak alpha frequency (PAF). While PAF has been proposed as a biomarker in several diseases and disorders, the disease mechanisms modulating PAF, as well as its physiological substrates, remain elusive. This has partly been due to challenges related to experimental manipulation and invasive procedures in human neuroscience, as well as the scarcity of animal models where PAF is consistently present in resting-state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!