The ability to link criminal activity and identity using validated analytical approaches can be of great value to forensic scientists. Herein, the factors affecting the recovery and detection of inorganic and organic energetic material residues within chemically or physically enhanced fingermarks on paper and glass substrates are presented using micro-bore anion exchange chromatography with suppressed conductivity detection. Fingermarks on both surfaces were enhanced using aluminium powder or ninhydrin after spiking with model test mixtures or through contact with black-powder substitutes. A quantitative study of the effects of environmental/method interferences, the sweat matrix, the surface and the enhancement technique on the relative anion recovery of forensically relevant species is presented. It is shown that the analytical method could detect target analytes at the nanogram level even within excesses of enhancement reagents and their reaction products when using solid phase extraction and/or microfiltration. To our knowledge, this work demonstrates for the first time that ion chromatography can detect anions in energetic materials within fingermarks on two very different surfaces, after operational enhancement techniques commonly used by forensic scientists and police have been applied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2013.04.017 | DOI Listing |
Small
January 2025
Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
Alkali and alkaline-earth metal incorporated 5,5'-dinitramino-3,3'-azo-1,3,4-oxadiazole (HDNAO) based Energetic Coordination Polymers (ECPs), namely dipotassium 5,5'-dinitramino-3,3'-azo-1,3,4-oxadiazole(KDNAO), dicesium 5,5'-dinitramino-3,3'-azo-1,3,4-oxadiazole(CsDNAO) and barium 5,5'-dinitramino-3,3'-azo-1,3,4-oxadiazole(BaDNAO) are synthesized for the first time. Synthesized ECPs are thoroughly characterized using infrared spectroscopy (IR), elemental analysis (EA), thermogravimetric analysis and differential scanning calorimetry (TGA-DSC), field emission scanning electron microscopy (FE-SEM), and dynamic light scattering (DLS), UV-vis spectroscopy. All ECPs are also confirmed by single-crystal X-ray diffraction technique (SC-XRD).
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Radiotherapy, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
Polynitrogen with high energy and environmental friendliness has exhibited potential application in military and civilian fields. In this study, first-principle calculations were employed to conduct a comprehensive investigation of the nitrogen-rich Lu-N compounds. The research yielded ten novel polynitrides: 2/-LuN, 1̅-LuN, 1̅-LuN, 2/-LuN, 1̅-LuN, 1̅-LuN, 1̅-LuN, -LuN, 4/-LuN, and -LuN.
View Article and Find Full Text PDFJACS Au
January 2025
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
The total oxidation of -hexane, a hazardous volatile organic compound (VOC) emitted by the pharmaceutical industry, presents a significant environmental challenge due to limited catalyst activity at low temperatures and poor stability at high temperatures. Here, we present a novel approach that overcomes these limitations by employing single-atom Ag/MnO catalysts coupled with nonthermal plasma (NTP). This strategy achieves exceptional performance in -hexane oxidation at low temperatures, demonstrating 96.
View Article and Find Full Text PDFJACS Au
January 2025
Interdisciplinary Research Center of Biology and Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
Construction and optimization of stable atomically dispersed metal sites on SiO surfaces are important yet challenging topics. In this work, we developed the amino group-assisted atomic layer deposition strategy to deposit the atomically dispersed Pt on SiO support for the first time, in which the particle size and ratio of Pt entities from single atom (Pt) to atomic cluster (Pt ) and nanoparticle (Pt ) on the SiO surface were well modulated. We demonstrated the importance of dual-site synergy for optimizing the activity of single-atom catalysts.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China.
Photocatalytic upcycling of waste polyolefins into value-added chemicals provides promise in plastic waste management and resource utilization. Previous works demonstrate that polyolefins can be converted into carboxylic acids, with CO as the final oxidation product. It is still challenging to explore more transformation products, particularly mild-oxidation products such as alcohols, because of their instability compared with polymer substrates, which are prone to oxidation during catalytic reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!