Two cold-induced family 19 glycosyl hydrolases from cherimoya (Annona cherimola) fruit: an antifungal chitinase and a cold-adapted chitinase.

Phytochemistry

Grupo Biotecnología y Calidad Posrecolección, Departamento de Caracterización, Calidad y Seguridad, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, José Antonio Novais 10, Ciudad Universitaria, E-28040 Madrid, Spain.

Published: November 2013

Two cold-induced chitinases were isolated and purified from the mesocarp cherimoyas (Annona cherimola Mill.) and they were characterised as acidic endochitinases with a Mr of 24.79 and 47.77kDa (AChi24 and AChi48, respectively), both family 19 glycosyl hydrolases. These purified chitinases differed significantly in their biochemical and biophysical properties. While both enzymes had similar optimal acidic pH values, AChi24 was enzymatically active and stable at alkaline pH values, as well as displaying an optimal temperature of 45°C and moderate thermostability. Kinetic studies revealed a great catalytic efficiency of AChi24 for oligomeric and polymeric substrates. Conversely, AChi48 hydrolysis showed positive co-operativity that was associated to a mixture of different functional oligomeric states through weak transient protein interactions. The rise in the AChi48 kcat at increasing enzyme concentrations provided evidence of its oligomerisation. AChi48 chitinase was active and stable in a broad acidic pH range, and while it was relatively labile as temperatures increased, with an optimal temperature of 35°C, it retained about 50% of its maximal activity from 5 to 50°C. Thermodynamic characterisation reflected the high kcat of AChi48 and the remarkably lower ΔH(‡), ΔS(‡) and ΔG(‡) values at 5°C compared to AChi24, indicating that the hydrolytic activity of AChi48 was less thermodependent. In vitro functional studies revealed that AChi24 had a strong antifungal defence potential against Botrytis cinerea, whereas they displayed no cryoprotective or antifreeze activity. Hence, based on biochemical, thermodynamic and functional data, this study demonstrates that two acidic endochitinases are induced at low temperatures in a subtropical fruit, and that one of them acts in an oligomeric cold-adapted manner.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2013.07.004DOI Listing

Publication Analysis

Top Keywords

family glycosyl
8
glycosyl hydrolases
8
annona cherimola
8
acidic endochitinases
8
active stable
8
optimal temperature
8
studies revealed
8
achi48
6
achi24
5
cold-induced family
4

Similar Publications

The advancement of next-generation sequencing has spurred the growing adoption of whole-exome sequencing (WES) for genetic screening. Preimplantation genetic testing for monogenic disorders (PGT-M) can effectively prevent the transmission of pathogenic variants. However, interpreting vast data volumes and ensuring precise genetic counseling, especially with variants of uncertain significance (VUS), remains challenging.

View Article and Find Full Text PDF

Objectives Diabetes mellitus type 2 is a chronic metabolic disorder characterized by insulin resistance and progressive beta-cell dysfunction. As diabetes persists over time, more pronounced symptoms like polyuria, polydipsia, fatigue, and complications like neuropathy, retinopathy, and cardiovascular issues may develop. Therefore, this study assessed the clinical symptoms associated with type 2 diabetes regarding the duration of diabetes.

View Article and Find Full Text PDF

The Russian dandelion () is a promising source of natural rubber (NR). The synthesis of NR takes place on the surface of organelles known as rubber particles, which are found in latex - the cytoplasm of specialized cells known as laticifers. As well as the enzymes directly responsible for NR synthesis, the rubber particles also contain small rubber particle proteins (SRPPs), the most abundant of which are SRPP3, 4 and 5.

View Article and Find Full Text PDF

CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.

View Article and Find Full Text PDF

Sesbania grandiflora, a fast-growing shrub from the Fabaceae family, is extensively researched for its therapeutic properties. Despite its highly valued medicinal properties, there have been no reports on exploring the proteome of Sesbania grandiflora. The present study aims to address this gap by investigating the proteomic profile of Sesbania grandiflora seeds with a primary focus on identifying storage proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!