Construction of an in vitro drug screening method for evaluating drug metabolism and toxicity by using cells is required instead of the conventional in vivo one that uses animals. In order to realize the in vitro study, analyzing the cellular activity or viability noninvasively in advance of the screening is essential. The aim of the current study is to establish a method that can evaluate the cellular activity depending on spheroid sizes by means of oxygen consumption and to determine the valid diameter of hepatocyte spheroids. To measure the respiratory activity of the spheroids, which were formed on a nanopillar sheet, we applied scanning electrochemical microscopy (SECM). From the viewpoint of high respiratory activity and its small variation, we determined that spheroids with 70 μm in diameter were adequate. We then performed a gene expression analysis by using a real-time PCR to evaluate the correlation with respiratory activity. As a result, a higher expression level of Hnf4α, which is essential for hepatocytes to fulfill many liver functions and is the indicator of well-differentiated hepatocytes, showed relatively higher respiratory activity. We concluded that the noninvasive SECM technique could evaluate the cellular activity of a single spheroid. Noninvasively measuring cellular activity by SECM makes it possible to evaluate the cellular activity prior to a nonclinical test and enables the continued monitoring of the drug response by using single spheroid. SECM becomes a powerful tool to satisfying the increasing demand for an in vitro system in the course of new drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiosc.2013.06.021DOI Listing

Publication Analysis

Top Keywords

respiratory activity
20
cellular activity
20
evaluate cellular
12
activity
10
noninvasively measuring
8
hepatocyte spheroids
8
scanning electrochemical
8
electrochemical microscopy
8
single spheroid
8
respiratory
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!