The binding of nuclear factor Y (NF-Y) to inverted CCAAT boxes (ICBs) within the promoter region of DNA topoisomerase IIα results in control of cell differentiation and cell cycle progression. Thus, NF-Y inhibitory small molecules could be employed to inhibit the replication of cancer cells. A library of pyrrolobenzodiazepine (PBD) C8-conjugates consisting of one PBD unit attached to tri-heterocyclic polyamide fragments was designed and synthesized. The DNA-binding affinity and sequence selectivity of each compound were evaluated in DNA thermal denaturation and DNase I footprinting assays, and the ability to inhibit binding of NF-Y to ICB1 and ICB2 was studied using an electrophoretic mobility shift assay (EMSA). 3a was found to be a potent inhibitor of NF-Y binding, exhibiting a 10-fold selectivity for an ICB2 site compared to an ICB1-containing sequence, and showing low nanomolar cytotoxicity toward human tumor cell lines. Molecular modeling and computational studies have provided details of the covalent attachment process that leads to formation of the PBD-DNA adduct, and have allowed the preference of 3a for ICB2 to be rationalized.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jm4001852DOI Listing

Publication Analysis

Top Keywords

extended pyrrolobenzodiazepine-polyamide
4
pyrrolobenzodiazepine-polyamide conjugate
4
conjugate selectivity
4
selectivity dna
4
dna sequence
4
icb2
4
sequence icb2
4
icb2 transcription
4
transcription factor
4
binding
4

Similar Publications

The binding of nuclear factor Y (NF-Y) to inverted CCAAT boxes (ICBs) within the promoter region of DNA topoisomerase IIα results in control of cell differentiation and cell cycle progression. Thus, NF-Y inhibitory small molecules could be employed to inhibit the replication of cancer cells. A library of pyrrolobenzodiazepine (PBD) C8-conjugates consisting of one PBD unit attached to tri-heterocyclic polyamide fragments was designed and synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!