Using both oxygen isotope ratios of leaf water (δ(18) OL ) and cellulose (δ(18) OC ) of Tillandsia usneoides in situ, this paper examined how short- and long-term responses to environmental variation and model parameterization affected the reconstruction of the atmospheric water vapour (δ(18) Oa ). During sample-intensive field campaigns, predictions of δ(18) OL matched observations well using a non-steady-state model, but the model required data-rich parameterization. Predictions from the more easily parameterized maximum enrichment model (δ(18) OL-M ) matched observed δ(18) OL and observed δ(18) Oa when leaf water turnover was less than 3.5 d. Using the δ(18) OL-M model and weekly samples of δ(18) OL across two growing seasons in Florida, USA, reconstructed δ(18) Oa was -12.6 ± 0.3‰. This is compared with δ(18) Oa of -12.4 ± 0.2‰ resolved from the growing-season-weighted δ(18) OC . Both of these values were similar to δ(18) Oa in equilibrium with precipitation, -12.9‰. δ(18) Oa was also reconstructed through a large-scale transect with δ(18) OL and the growing-season-integrated δ(18) OC across the southeastern United States. There was considerable large-scale variation, but there was regional, weather-induced coherence in δ(18) Oa when using δ(18) OL . The reconstruction of δ(18) Oa with δ(18) OC generally supported the assumption of δ(18) Oa being in equilibrium with precipitation δ(18) O (δ(18) Oppt ), but the pool of δ(18) Oppt with which δ(18) Oa was in equilibrium - growing season versus annual δ(18) Oppt - changed with latitude.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12167DOI Listing

Publication Analysis

Top Keywords

δ18
28
δ18 equilibrium
12
δ18 δ18
12
δ18 oppt
12
atmospheric water
8
water vapour
8
reconstruction δ18
8
leaf water
8
δ18 ol-m
8
observed δ18
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!