The construction of new nanotools is presented here using the example of fluorescent semiconductor nanocrystals, quantum dots (QDs). In this study, the implementation of the new lipid oligonucleotide conjugate-functionalized quantum dots (LON-QDs) is realized in four steps: (i) the synthesis of the lipid oligonucleotide conjugates (LONs), (ii) the encapsulation of QDs by nucleolipids and LONs, (iii) the study of the duplex formation of LON-QDs with the complementary ON partners, and (iv) the cellular uptake of the LON-QD platform and hybridization with the target ONs (microRNA and miR-21).

Download full-text PDF

Source
http://dx.doi.org/10.1021/bc400157zDOI Listing

Publication Analysis

Top Keywords

lipid oligonucleotide
12
quantum dots
8
quantum dot
4
dot lipid
4
oligonucleotide bioconjugates
4
bioconjugates anti-microrna
4
anti-microrna nanoplatform
4
nanoplatform construction
4
construction nanotools
4
nanotools presented
4

Similar Publications

Colorectal cancer (CRC) is one of the most common oncological disorders. Its fundamental treatments include surgery and chemotherapy, predominantly utilizing 5-fluorouracil (5-FU). Despite medical advances, CRC continues to present a high risk of recurrence, metastasis and low survival rates.

View Article and Find Full Text PDF

Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling.

View Article and Find Full Text PDF

Understanding the interactions between lipid membranes and nucleotide drugs is crucial for nucleic acid therapy. Although several methods have been employed to evaluate nucleotide-lipid membrane interactions, these interactions can be complex; this complexity arises from how external factors, such as ionic strength or temperature, influence the lipid membrane's overall properties. In this study, we prepared a lipid membrane-immobilized monolithic silica (LMiMS) column for high-performance liquid chromatography (HPLC) analysis to understand interactions between the lipid membrane and nucleic acid.

View Article and Find Full Text PDF

Emerging Delivery Systems for Enabling Precision Nucleic Acid Therapeutics.

ACS Nano

January 2025

Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.

Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems.

View Article and Find Full Text PDF

Hybrid prodrug nanoassembly for hypoxia-triggered immunogenic chemotherapy and immune modulation.

J Control Release

January 2025

Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, China; State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Tumor hypoxia is a critical driver of cancer progression, metastasis, and therapy resistance, posing significant challenges in effective cancer treatment. Hypoxia-activable prodrugs offer a promising strategy to target tumors in low-oxygen conditions, but their efficacy is often hindered by intrinsic properties and extrinsic cues. In this study, we developed a dual-prodrug nanoassembly system (CPPA) composed of a hypoxia-triggerable camptothecin (CPT)-based dimeric prodrug (CP) and a lipid-conjugated STAT3 antisense oligonucleotide (ASO) prodrug (PA), aiming to enhance tumor-targeted chemotherapy and overcome the immune evasion within the tumor microenvironment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!