[Effects of echinacoside on extracellular acetylcholine and choline levels of hippocampus and striatum of cerebral ischemia rats].

Yao Xue Xue Bao

Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832002, China.

Published: May 2013

The aim of this study is to investigate the effect of echinacoside (ECH) on cholinergic neurotransmitter extracellular of hippocampus and striatum and its possible mechanisms of neuro-protective effect against vascular dementia rats. In this study brain microdialysis technique combined with HPLC-IMER-ECD (high-performance liquid chromatography-immobilized enzyme reactor-electrochemical detector) was used. The bilateral common carotid arteries occluded in two times operation at 72 h interval for vascular dementia model rats were used and the successful vascular dementia model rats were examined by Morris water maze. The content of acetylcholine (ACh) and choline (Ch) of microdialysate extracellular of hippocampus and striatum was determined by HPLC-IMER-ECD and the AChE activity in the hippocampus was measured. The results showed that the success rate of vascular dementia model was 83.08% after six weeks; the results also showed that echinacoside and galantamine could increase the content of ACh and reduce the content of Ch extracellular of hippocampus and striatum significantly and the AChE activity increased significantly compared with that of the model group. The results suggested that echinacoside could promote the recovery of cholinergic neurotransmitter levels in vascular dementia rats' brain, which may be one of the mechanisms of neuro-protection.

Download full-text PDF

Source

Publication Analysis

Top Keywords

vascular dementia
20
hippocampus striatum
16
extracellular hippocampus
12
dementia model
12
cholinergic neurotransmitter
8
model rats
8
ache activity
8
hippocampus
5
vascular
5
dementia
5

Similar Publications

The association of seizure control with neuropathology in dementia.

Brain

January 2025

Comprehensive Epilepsy Program, Department of Neurology, University of Virginia, Charlottesville, Virginia 22908, USA.

Seizures in people with dementia (PWD) are associated with faster cognitive decline and worse clinical outcomes. However, the relationship between ongoing seizure activity and postmortem neuropathology in PWD remains unexplored. We compared post-mortem findings in PWD with active, remote, and no seizures using multicentre data from 39 Alzheimer's Disease Centres from 2005 to 2021.

View Article and Find Full Text PDF

The Northern Lights Neuroscience Symposium 2024 "Expanding Spectrum of Common Dementia Disorders" was held in Hanasaari, Helsinki (Espoo), Finland on September 26-27, 2024. The meeting was jointly organised by the Scandinavian Neuropathological Society (chair Olivera Casar-Borota) and University of Helsinki. Drs.

View Article and Find Full Text PDF

The role of lipid metabolism in cognitive impairment.

Arq Neuropsiquiatr

January 2025

Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.

Alzheimer's disease (AD), diabetic cognitive impairment (DCI), and vascular dementia (VD) are considered the most common causes of severe cognitive impairment in clinical practice. Numerous factors can influence their progression, and many studies have recently revealed that metabolic disorders play crucial roles in the progression of cognitive impairment. Mounting evidence indicate that the regulation of lipid metabolism is a major factor in maintaining brain homeostasis.

View Article and Find Full Text PDF

The immunology of stroke and dementia.

Immunity

January 2025

Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA. Electronic address:

Ischemic stroke and vascular cognitive impairment, caused by a sudden arterial occlusion or more subtle but protracted vascular insufficiency, respectively, are leading causes of morbidity and mortality worldwide with limited therapeutic options. Innate and adaptive immunity have long been implicated in neurovascular injury, but recent advances in methodology and new experimental approaches have shed new light on their contributions. A previously unappreciated dynamic interplay of brain-resident, meningeal, and systemic immune cells with the ischemic brain and its vasculature has emerged, and new insights into the frequent overlap between vascular and Alzheimer pathology have been provided.

View Article and Find Full Text PDF

Lack of intracranial atherosclerosis in various atherosclerotic mouse models.

Vasc Biol

January 2025

M Daemen, Pathology, Amsterdam UMC Location AMC, Amsterdam, Netherlands.

Background: Although mice are used extensively to study atherosclerosis of different vascular beds, limited data is published on the occurrence of intracranial atherosclerosis. Since intracranial atherosclerosis is a common cause of stroke and is associated with dementia, a relevant animal model is needed to study these diseases.

Methods And Results: We examined the presence of intracranial atherosclerosis in different atherogenic mouse strains and studied differences in vessel wall characteristics in mouse and human tissue in search for possible explanations for the different atherosclerotic susceptibility between extracranial and intracranial vessels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!