The redox sensitive, proinflammatory nuclear transcription factor NF-κB plays a key role in inflammation. In a redox state disrupted by oxidative stress, pro-inflammatory genes are upregulated by the activation of NF-κB via diverse kinases. Thus, the search and characterization of new substances that modulate NF-κB are topics of considerable research interest. Caffeic acid is a component of garlic, some fruits, and coffee, and is widely used as a phenolic agent in beverages. In the present study, caffeic acid was examined with respect to the modulation of inflammatory NF-κB activation via the redox-related c-Src/ERK and NIK/IKK pathways via the reduction of oxidative stress. YPEN-1 cells (an endothelial cell line) were used to explore the molecular mechanism underlying the anti-inflammatory effect of caffeic acid by examining its modulation of NF-κB signaling pathway by LPS. Our results show that LPS-induced oxidative stress-related NF-κB activation upregulated pro-inflammatory COX-2, NF-κB targeting gene which were all inhibited effectively by caffeic acid. Our study shows that caffeic acid inhibits the activation of NF-κB via the c-Src/ERK and NIK/IKK signal transduction pathways. Our results indicate that antioxidative effect of caffeic acid and its restoration of redox balance are responsible for its anti-inflammatory action. Thus, the study provides new information regarding the anti-inflammatory properties of caffeic acid and the roles in the regulation of LPS-induced oxidative stress induces alterations in signal transduction pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-013-0211-6DOI Listing

Publication Analysis

Top Keywords

caffeic acid
32
nf-κb activation
12
oxidative stress
12
nf-κb
9
caffeic
8
activation nf-κb
8
study caffeic
8
c-src/erk nik/ikk
8
lps-induced oxidative
8
signal transduction
8

Similar Publications

In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant.

View Article and Find Full Text PDF

Identification of the arachidonic acid 5-lipoxygenase and its function in the immunity of Apostichopus japonicus.

Fish Shellfish Immunol

December 2024

Department of Biotechnology, School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China; Dalian Jinshiwan Laboratory, Dalian, China. Electronic address:

A number of studies have been demonstrated that arachidonate 5-lipoxygenase (ALOX-5) plays a role in regulating a range of physiological and pathological processes through the catalysis of leukotriene formation from arachidonic acid (ARA). The coding sequence of ALOX-5 from Apostichopus japonicus (Aj-ALOX-5) was successfully amplified, resulting in a 2028 bp ORF sequence that encodes 674 amino acids. A comparison of the amino acid sequence with those of other 5-lipoxygenases revealed that Aj-ALOX-5 has the N-terminal "PLAT domain" and C-terminal "lipoxygenase structural domain" characteristic of this enzyme family.

View Article and Find Full Text PDF

Anti-aflatoxin potential of phenolic compounds from common beans (Phaseolus vulgaris L.).

Food Chem

December 2024

Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica. Electronic address:

Common beans (Phaseolus vulgaris L.) are widely consumed legumes in Latin America and Africa, valued for their nutritional compounds and antioxidants. Their high polyphenol content contributes to the antioxidant properties, with bioactive compounds showing antifungal and antimycotoxin effects.

View Article and Find Full Text PDF

In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].

View Article and Find Full Text PDF

The study analyzed the aqueous leaf extracts of Moringa oleifera and Musa sps. for phytochemical components, including flavonoids, sterols, saponins, tannins, and glycosides. The LC-MS analysis revealed gingerol, vicenin-2, caffeic acid, quercetin, and other compounds in the extracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!