The transcription factor FOXP3 plays an essential role in regulatory T cell development and function. In addition, it has recently been identified as a tumor suppressor in different cancers. Here, we report that FOXP3 is expressed in normal brain but strongly down-regulated in glioblastoma (GB) and in corresponding GB stem-like cells growing in culture as neurospheres (GB-NS), as evaluated by real time-PCR and confirmed by immunohistochemistry on an independent set of GB. FOXP3 expression was higher in low-grade gliomas than in GB. Interestingly, we also found that neurosphere generation, a feature present in 58% of the GB that we examined, correlated with lower expression of FOXP3 and shorter patient survival. FOXP3 silencing in one GB-NS expressing measurable levels of the gene caused a significant increase in proliferation and migration as well as highly aggressive growth in xenografts. Conversely, FOXP3 over-expression impaired GB-NS migration and proliferation in vitro. We also demonstrated using ChiP that FOXP3 is a transcriptional regulator of p21 and c-MYC supporting the idea that dysregulated expression of these factors is a major mechanism of tumorigenesis driven by the loss of FOXP3 expression in gliomas. These findings support the assertion that FOXP3 exhibits tumor suppressor activity in glioblastomas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3717952PMC
http://dx.doi.org/10.18632/oncotarget.644DOI Listing

Publication Analysis

Top Keywords

foxp3
10
proliferation migration
8
tumor suppressor
8
foxp3 expression
8
foxp3 novel
4
novel glioblastoma
4
glioblastoma oncosuppressor
4
oncosuppressor proliferation
4
migration transcription
4
transcription factor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!