Pharmacological inhibition of the chemokine receptor, CX3CR1, reduces atherosclerosis in mice.

Arterioscler Thromb Vasc Biol

From UMR_S 945, Laboratoire "Immunité et Infection," Inserm Paris, France and Université Pierre et Marie Curie- (UPMC) Paris 6, Paris, France (L.P., A.B., P.H., K.D., E.G., C.A., P.D., C.C.); UMR_S 939 P.LUMR_S 939, Laboratoire "Dyslipidémies, Inflammation et Athérosclérose," Paris, France (F.S.C., P.L.); and AP-HP, Groupe Hospitalier Pitié-Salpétrière, Service d'Immunologie, Paris, France (C.C.).

Published: October 2013

Objective: Alterations of the chemokine receptor CX3CR1 gene were associated with a reduced risk of myocardial infarction in human and limited atherosclerosis in mice. In this study, we addressed whether CX3CR1 antagonists are potential therapeutic tools to limit acute and chronic inflammatory processes in atherosclerosis.

Approach And Results: Treatment with F1, an amino terminus-modified CX3CR1 ligand endowed with CX3CR1 antagonist activity, reduced the extent of atherosclerotic lesions in both Apoe(-/-) and Ldlr(-/-) proatherogenic mouse models. Macrophage accumulation in the aortic sinus was reduced in F1-treated Apoe(-/-) mice but the macrophage density of the lesions was similar in F1-treated and control mice. Both in vitro and in vivo F1 treatment reduced CX3CR1-dependent inflammatory monocyte adhesion, potentially limiting their recruitment. In addition, F1-treated Apoe(-/-) mice displayed reduced numbers of blood inflammatory monocytes, whereas resident monocyte numbers remained unchanged. Both in vitro and in vivo F1 treatment reduced CX3CR1-dependent inflammatory monocyte survival. Finally, F1 treatment of Apoe(-/-) mice with advanced atherosclerosis led to smaller lesions than untreated mice but without reverting to the initial phenotype.

Conclusions: The CX3CR1 antagonist F1 is a potent inhibitor of the progression of atherosclerotic lesions by means of its selective impact on inflammatory monocyte functions. Controlling monocyte trafficking and survival may be an alternative or complementary therapy to lipid-lowering drugs classically used in the treatment of atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.112.300930DOI Listing

Publication Analysis

Top Keywords

apoe-/- mice
12
inflammatory monocyte
12
chemokine receptor
8
receptor cx3cr1
8
atherosclerosis mice
8
cx3cr1 antagonist
8
atherosclerotic lesions
8
f1-treated apoe-/-
8
vitro vivo
8
vivo treatment
8

Similar Publications

Endothelial Gsα deficiency promotes ferroptosis and exacerbates atherosclerosis in apolipoprotein E-deficient mice via the inhibition of NRF2 signaling.

Acta Pharmacol Sin

January 2025

State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, China.

The importance of ferroptosis in the occurrence and progression of atherosclerosis is gradually being recognized. The stimulatory G protein α subunit (Gsα) plays a crucial role in the physiology of endothelial cells (ECs). Our previous study showed that endothelial Gsα could regulate angiogenesis and preserve endothelial permeability.

View Article and Find Full Text PDF

This study aimed to investigate the potential mechanism and the compatibility significance of Tanyu Tongzhi Formula in treating atherosclerosis(AS) in mice based on the transforming growth factor-β(TGF-β)/Smad2/3 signaling pathway. Eight C57BL/6J mice were as assigned to a normal control group and fed a regular diet, while 35 ApoE~(-/-) mice of the same strain were fed a high-fat diet for 8 weeks to establish an AS model. The model mice were randomly divided into a model group, a Tanyu Tongzhi group(18.

View Article and Find Full Text PDF

SOX11 Silence Inhibits Atherosclerosis Progression in ApoE-Deficient Mice by Alleviating Endothelial Dysfunction.

Exp Cell Res

January 2025

Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Cardiology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China. Electronic address:

SRY-Box Transcription Factor-11 (SOX11) is a transcriptional regulatory factor that plays a crucial role in inflammatory responses. However, its involvement in atherosclerosis (AS), a cardiovascular disease driven by endothelial cell inflammation, remains unknown. This study aims to elucidate the role of SOX11 in AS.

View Article and Find Full Text PDF

Deubiquitinating enzymes (DUBs) are integral regulators of protein stability. Among these, Ubiquitin-specific protease 18 (USP18) has emerged as a potential therapeutic target for heart failure. However, its precise role in atherosclerosis remains to be comprehensively understood.

View Article and Find Full Text PDF

Aims: Diabetes mellitus (DM) induces increased inflammation of atherosclerotic plaques, resulting in elevated plaque instability. Mesenchymal stem cell (MSC) therapy was shown to decrease plaque size and increase stability in non-DM animal models. We now studied the effect of MSC therapy in a streptozotocin-induced hyperglycaemia mouse model using a clinically relevant dose of adipose tissue-derived MSCs (ASCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!