Development of vascular smooth muscle contractility by endothelium-derived transforming growth factor β proteins.

Pflugers Arch

Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.

Published: February 2014

It is well established that the release of vasodilators and vasoconstrictors from vascular endothelium regulates vascular smooth muscle contraction. In this report, we investigate the role of the endothelium in the development and maintenance of constitutive vascular contractility. For that purpose, contractile activity of cultured bovine aortic smooth muscle cells (BASMCs) embedded in collagen gels was monitored by changes in gel diameter. After culturing for 5 days, ATP- and high KCl solution-induced contractions were significantly enhanced in the gels that were overlaid with bovine aortic endothelial cells (BAECs) or were cultured with conditioned medium of cultured BAECs. ATP-induced Ca(2+) transients, recorded in BASMCs cultured with conditioned medium of BAECs, were markedly augmented, but high KCl-induced Ca(2+) transients were not affected. BASMCs in control gels were spindle shaped, and those in endothelium-treated gels were more elongated and interconnected. The endothelial conditioned medium also strongly affected the intracellular distribution of actin fibers. Conditioned medium of BAECs contained TGFβ1 and TGFβ2. The TGFβ receptor antagonist SB431542 as well as simultaneous treatment with TGFβ1 and TGFβ2 neutralizing antibodies completely reversed the above effects of endothelial conditioned medium on BASMCs. BAECs medium induced phosphorylation of Smad2 and increased ATP-induced phosphorylation of myosin light chain in BASMCs. The present results indicate that the release of TGFβ1 and TGFβ2 from vascular endothelium affects the contractility of vascular smooth muscle cells by altering their morphology and agonist-induced Ca(2+) mobilization.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00424-013-1329-6DOI Listing

Publication Analysis

Top Keywords

conditioned medium
20
smooth muscle
16
vascular smooth
12
tgfβ1 tgfβ2
12
vascular endothelium
8
bovine aortic
8
muscle cells
8
cultured conditioned
8
ca2+ transients
8
medium baecs
8

Similar Publications

Mast cells, immune sentinels that respond to various stimuli in barrier organs, provide defense by expressing pattern recognition receptors, such as Toll-like receptors (TLRs). They may affect inflammatory responses and wound healing. Here, we investigated the effect of TLR2/6-stimulated mast cells on wound healing in keratinocytes.

View Article and Find Full Text PDF

Background: Ferroptosis is a recently studied form of programmed cell death characterized by lipid peroxides accumulation in the cells. This process occurs when a cell's antioxidant capacity is disturbed resulting in the inability of the cell to detoxify the toxic peroxides. Two major components that regulate ferroptosis are cysteine and iron.

View Article and Find Full Text PDF

Introduction: Before performing cell therapy clinical trials, it is important to understand how cells are influenced by different growth conditions and to find optimal xeno-free medium formulations. In this study we have investigated the properties of adipose tissue-derived stem cells (ASCs) cultured under xeno-free conditions.

Methods: Human lipoaspirate samples were digested to yield the stromal vascular fraction cells which were then seeded in i) Minimum Essential Medium-α (MEM-α) supplemented with 10 % (v/v) fetal bovine serum (FBS), ii) MEM-α supplemented with 2 % (v/v) human platelet lysate (PLT) or iii) PRIME-XV MSC expansion XSFM xeno-free, serum free medium (XV).

View Article and Find Full Text PDF

Triple‑negative breast cancer (TNBC), a highly malignant breast cancer subtype with a pronounced metastatic propensity, forms the focus of the present investigation. MDA‑MB‑231, a prevalently utilized TNBC cell line in cancer research, was employed. In accordance with the tumour angiogenesis theory, cancer cells are capable of instigating angiogenesis and the formation of a novel vascular system within the tumour microenvironment, which subsequently sustains malignant proliferation and metastasis.

View Article and Find Full Text PDF

Posterior Limbal Mesenchymal Stromal Cells Promote Proliferation and Stemness of Transition Zone Cells: A Novel Insight Into Corneal Endothelial Rejuvenation.

Invest Ophthalmol Vis Sci

January 2025

Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.

Purpose: Progenitors for the corneal endothelium have been identified in the transition zone (TZ), but their cellular interactions remain undefined. Posterior limbal mesenchymal stromal cells (P-LMSCs) may support TZ cells in the posterior limbus. This study aims to characterize P-LMSCs and investigate their effects on TZ cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!