Background: Calcium plays an essential role in nearly all cellular processes. As such, cellular and systemic calcium concentrations are tightly regulated. During sepsis, derangements in such tight regulation frequently occur, and treating hypocalcemia with parenteral calcium administration remains the current practice guideline.

Objective: We investigated whether calcium administration worsens mortality and organ dysfunction using an experimental murine model of sepsis and explored the mechanistic role of the family of calcium/calmodulin-dependent protein kinases in mediating these physiological effects. To highlight the biological relevance of these observations, we conducted a translational study of the association between calcium administration, organ dysfunction, and mortality among a cohort of critically ill septic ICU patients.

Design: Prospective, randomized controlled experimental murine study and observational clinical cohort analysis.

Setting: University research laboratory and eight ICUs at a tertiary care center.

Patients: A cohort of 870 septic ICU patients.

Subjects: C57Bl/6 and CaMKK mice.

Interventions: Mice underwent cecal ligation and puncture polymicrobial sepsis and were administered with calcium chloride (0.25 or 0.25 mg/kg) or normal saline.

Measurements And Main Results: Administering calcium chloride to septic C57Bl/6 mice heightened systemic inflammation and vascular leak, exacerbated hepatic and renal dysfunction, and increased mortality. These events were significantly attenuated in CaMKK mice. In a risk-adjusted analysis of septic patients, calcium administration was associated with an increased risk of death, odds ratio 1.92 (95% CI, 1.00-3.68; p = 0.049), a significant increase in the risk of renal dysfunction, odds ratio 4.74 (95% CI, 2.48-9.08; p < 0.001), and a significant reduction in ventilator-free days, mean decrease 3.29 days (0.50-6.08 days; p = 0.02).

Conclusions: Derangements in calcium homeostasis occur during sepsis that is sensitive to calcium administration. This altered calcium signaling, transduced by the calmodulin-dependent protein kinase kinase cascade, mediates heightened inflammation and vascular leak that culminates in elevated organ dysfunction and mortality. In the clinical management of septic patients, calcium supplementation provides no benefit and may impose harm.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812408PMC
http://dx.doi.org/10.1097/CCM.0b013e31828cf436DOI Listing

Publication Analysis

Top Keywords

calcium administration
20
calcium
13
organ dysfunction
12
calcium supplementation
8
calcium/calmodulin-dependent protein
8
protein kinase
8
kinase kinase
8
experimental murine
8
dysfunction mortality
8
septic icu
8

Similar Publications

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.

View Article and Find Full Text PDF

Correlation between dietary calcium intake and eczema in American adult population.

Sci Rep

December 2024

Department of Dermatology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Binhu District, WuxiCity, 214122, China.

Eczema is a common chronic skin condition. Previous studies indicated the dietary factors, such as calcium intake, might influence the onset and progression of eczema in the population of gravidas and infants. However, there was no studies on the correlation between dietary calcium and the adult population.

View Article and Find Full Text PDF

Background: Evidence has revealed that oestrogen deprivation-induced osteolysis is microbiota-dependent and can be treated by probiotics. However, the underlying mechanism require further investigation. This study aims to provide additional evidence supporting the use of probiotics as an adjuvant treatment and to explore the pathophysiology of oestrogen-deprived osteolysis.

View Article and Find Full Text PDF

Eldecalcitol alleviates diabetic periodontitis by regulating macrophage efferocytosis and polarization via SOCE machinery.

Int Immunopharmacol

December 2024

Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, China; School of Clinical Medicine, Jining Medical University, Jining, China; Institute of Oral Basic Research, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University. Electronic address:

Diabetes exacerbates the occurrence and severity of periodontitis, the pathogenesis of diabetic periodontitis (DPD) is influenced by the delayed resolution of inflammation. Eldecalcitol (ED-71) has shown promise in preventing bone loss in DPD. We herein aimed to investigate the role of ED-71 in the inflammatory regression phase of DPD and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!