Members of the genus Candidatus Accumulibacter are important in many wastewater treatment systems performing enhanced biological phosphorus removal (EBPR). The Accumulibacter lineage can be subdivided phylogenetically into multiple clades, and previous work showed that these clades are ecologically distinct. The complete genome of Candidatus Accumulibacter phosphatis strain UW-1, a member of Clade IIA, was previously sequenced. Here, we report a draft genome sequence of Candidatus Accumulibacter spp. strain UW-2, a member of Clade IA, assembled following shotgun metagenomic sequencing of laboratory-scale bioreactor sludge. We estimate the genome to be 80-90% complete. Although the two clades share 16S rRNA sequence identity of >98.0%, we observed a remarkable lack of synteny between the two genomes. We identified 2317 genes shared between the two genomes, with an average nucleotide identity (ANI) of 78.3%, and accounting for 49% of genes in the UW-1 genome. Unlike UW-1, the UW-2 genome seemed to lack genes for nitrogen fixation and carbon fixation. Despite these differences, metabolic genes essential for denitrification and EBPR, including carbon storage polymer and polyphosphate metabolism, were conserved in both genomes. The ANI from genes associated with EBPR was statistically higher than that from genes not associated with EBPR, indicating a high selective pressure in EBPR systems. Further, we identified genomic islands of foreign origins including a near-complete lysogenic phage in the Clade IA genome. Interestingly, Clade IA appeared to be more phage susceptible based on it containing only a single Clustered Regularly Interspaced Short Palindromic Repeats locus as compared with the two found in Clade IIA. Overall, the comparative analysis provided a genetic basis to understand physiological differences and ecological niches of Accumulibacter populations, and highlights the importance of diversity in maintaining system functional resilience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834850PMC
http://dx.doi.org/10.1038/ismej.2013.117DOI Listing

Publication Analysis

Top Keywords

candidatus accumulibacter
12
biological phosphorus
8
phosphorus removal
8
member clade
8
clade iia
8
genes associated
8
associated ebpr
8
genome
6
genes
6
accumulibacter
5

Similar Publications

" Accumulibacter" is a unique and pivotal genus of polyphosphate-accumulating organisms prevalent in wastewater treatment plants and plays mainstay roles in the global phosphorus cycle. However, the efforts to fully understand their genetic and metabolic characteristics are largely hindered by major limitations in existing sequence-based annotation methods. Here, we reported an integrated approach combining pangenome analysis, protein structure prediction and clustering, and meta-omic characterization, to uncover genetic and metabolic traits previously unexplored for .

View Article and Find Full Text PDF

Operational strategies have been applied in constructed wetlands to optimize the removal of nutrients and hormones that are still a concern in wastewater treatment. The strategy of intensifying intermittent aeration was investigated in two microcosm-scale vertical-flow constructed wetlands (VFCWs) planted with Eichhornia crassipes onto autoclaved aerated concrete (AC) in the removal of nutrients, estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). CW-1 (2.

View Article and Find Full Text PDF

Porous polymers embedded with iron carbon enhanced densified activated sludge formation and wastewater treatment.

Bioresour Technol

December 2024

Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

Municipal wastewater treatment plants in China face significant challenges in effectively removing pollutants from low-strength wastewater with a low carbon-to-nitrogen (COD/N) ratio. This study proposes a novel approach incorporating porous polymers embedded with iron-carbon (PP-IC) into an activated sludge system to enhance treatment. The PP-IC accelerated the formation of densified activated sludge (DAS), characterized by small particle sizes (<200 μm), excellent settleability (sludge volume index: 61 mL/g), and improved pollutant removal efficiency, with total nitrogen and total phosphorus removal rates increasing by 14.

View Article and Find Full Text PDF

The effective production of NO-N through endogenous partial denitrification (EPD) provides a promising perspective for the broader adoption and application of anaerobic ammonia oxidation. However, the accumulation of polycyclic aromatic hydrocarbons (PAHs) in the environment may worsen the operational challenges of the EPD system. This study evaluated the resilience of the EPD system to the toxic impacts of phenanthrene (PHE) and anthracene (ANT) through macrogenomic analysis.

View Article and Find Full Text PDF

Responses of SNEDPR-AGS system under long-term exposure of polyethylene terephthalate microplastics for treating low C/N wastewater: Granular effect and microbial structure.

J Hazard Mater

December 2024

National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China. Electronic address:

The removal of nutrients in sewage treatment plants can be significantly impacted by carbon limitations, especially for treating low carbon to nitrogen ratio (C/N) wastewater, which can markedly increase operational costs. Simultaneous nitrification, endogenous denitrification, and phosphorus removal combined with aerobic granular sludge (SNEDPR-AGS) has emerged as one of the optimal processes for treating low C/N wastewater owing to its high carbon utilization efficiency; however, the long-term effect of microplastics (MPs) on this system remains unclear. This study investigated the granular effect and microbial response of an SNEDPR-AGS system for treating low C/N wastewater under long-term exposure (180 d) to polyethylene terephthalate microplastics (PET-MPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!