Historically, visual search models were mainly evaluated based on their account of mean reaction times (RTs) and accuracy data. More recently, Wolfe, Palmer, and Horowitz (2010) have demonstrated that the shape of the entire RT distributions imposes important constraints on visual search theories and can falsify even successful models such as guided search, raising a challenge to computational theories of search. Competitive guided search is a novel model that meets this important challenge. The model is an adaptation of guided search, featuring a series of item selection and identification iterations with guidance towards targets. The main novelty of the model is its termination rule: A quit unit, which aborts the search upon selection, competes with items for selection and is inhibited by the saliency map of the visual display. As the trial proceeds, the quit unit both increases in strength and suffers less saliency-based inhibition and hence the conditional probability of quitting the trial accelerates. The model is fitted to data the data from three classical search task that have been traditionally considered to be governed by qualitatively different mechanisms, including a spatial configuration, a conjunction, and a feature search (Wolfe et al., 2010). The model is mathematically tractable and it accounts for the properties of RT distributions and for error rates in all three search tasks, providing a unifying theoretical framework for visual search.

Download full-text PDF

Source
http://dx.doi.org/10.1167/13.8.24DOI Listing

Publication Analysis

Top Keywords

guided search
16
search
12
visual search
12
competitive guided
8
quit unit
8
model
5
search meeting
4
meeting challenge
4
challenge benchmark
4
benchmark distributions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!