What factors determine placental glucose transfer kinetics?

Placenta

Institute of Developmental Sciences, University of Southampton, Faculty of Medicine, Southampton SO16 6YD, United Kingdom.

Published: October 2013

Introduction: Transfer of glucose across the human placenta is directly proportional to maternal glucose concentrations even when these are well above the physiological range. This study investigates the relationship between maternal and fetal glucose concentrations and transfer across the placenta.

Methods: Transfer of d-glucose, (3)H-3-o-methyl-d-glucose ((3)H-3MG) and (14)C-l-glucose across the isolated perfused human placental cotyledon was determined for maternal and fetal arterial d-glucose concentrations between 0 and 20 mmol/l.

Results: Clearance of (3)H-3MG or (14)C-l-glucose was not affected by maternal or fetal d-glucose concentrations in either circulation.

Discussion: Based on the arterial glucose concentrations and the reported KM for GLUT1, the transfer of d-glucose and (3)H-3MG would be expected to show signs of saturation as d-glucose concentrations increased but this did not occur. One explanation for this is that incomplete mixing of maternal blood and the rate of diffusion across unstirred layers may lower the effective concentration of glucose at the microvillous membrane and subsequently at the basal membrane. Uncertainties about the affinity of GLUT1 for glucose, both outside and inside the cell, may also contribute to the difference between the predicted and observed kinetics.

Conclusion: These factors may therefore help explain why the observed and predicted kinetics differ and they emphasise the importance of understanding the function of transport proteins in their physiological context. The development of a computational model of glucose transfer may improve our understanding of how the determinants of placental glucose transfer interact and function as a system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3776928PMC
http://dx.doi.org/10.1016/j.placenta.2013.07.001DOI Listing

Publication Analysis

Top Keywords

glucose transfer
12
glucose concentrations
12
maternal fetal
12
d-glucose concentrations
12
glucose
9
placental glucose
8
transfer d-glucose
8
3h-3mg 14c-l-glucose
8
transfer
7
concentrations
6

Similar Publications

Characterizing the Contaminant-Adhesion of a Dibenzofuran Degrader sp.

Microorganisms

January 2025

Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.

The adhesion between dibenzofuran (DF) and degrading bacteria is the first step of DF biodegradation and affects the efficient degradation of DF. However, their efficient adhesion mechanism at the molecular level remains unclear. Therefore, this study first examined the adhesive behaviors and molecular mechanisms of sp.

View Article and Find Full Text PDF

Cinnamic acid alleviates endothelial dysfunction and oxidative stress by targeting PPARδ in obesity and diabetes.

Chin Med

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.

Objective: Cinnamic acid (CA) is a bioactive compound isolated from cinnamon. It has been demonstrated to ameliorate inflammation and metabolic diseases, which are associated with endothelial dysfunction. This study was aimed to study the potential protective effects of CA against diabetes-associated endothelial dysfunction and its underlying mechanisms.

View Article and Find Full Text PDF

Electrochemical Glucose Sensor Based on Dual Redox Mediators.

Biosensors (Basel)

December 2024

Cofoe Medical Technology Co., Ltd., No. 816 Zhenghua Road, Changsha 410021, China.

Electrochemical glucose sensor holds significant promise for the monitoring of blood glucose levels in diabetic patients. In this study, we proposed a novel electrochemical glucose sensor based on 1,10-Phenanthroline-5,6-dione (PD)/Ru(III) as a dual redox mediator. The synergistic effect of PD and Ru(III) was utilized to efficiently facilitate the electron transfer between the enzyme-active center and the electrode.

View Article and Find Full Text PDF

Diabetes significantly increases the risk of serious health issues, including prolonged skin inflammation and delayed wound healing, owing to inferior glucose control and suppression of the immune system. Although traditional hydrogen (H2) therapy is slightly effective, its ability to tailor the release of H2 on the skin is limited. Accordingly, this study proposed a novel strategy for electrocatalytic H2 release under neutral conditions to promote wound healing in diabetic mice and rabbit.

View Article and Find Full Text PDF

Background: Purulent meningitis poses a significant clinical challenge with high mortality. We present the case of a 54-year-old female transferred to our emergency department with suspected bacterial meningitis, later diagnosed as an Austrian syndrome.

Case Presentation: The patient exhibited subacute somnolence, severe headache, nausea and fever.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!