How to mitigate membrane fouling remains a critical challenge for widespread application of membrane bioreactors. Herein, an antifouling electrochemical membrane bioreactor (EMBR) was developed based on in-situ utilization of the generated electricity for fouling control. In this system, a maximum power density of 1.43 W/m(3) and a current density of 18.49 A/m(3) were obtained. The results demonstrate that the formed electric field reduced the deposition of sludge on membrane surface by enhancing the electrostatic repulsive force between them. The produced H2O2 at the cathode also contributed to the fouling mitigation by in-situ removing the membrane foulants. In addition, 93.7% chemical oxygen demand (COD) removal and 96.5% NH4(+)-N removal in average as well as a low effluent turbidity of below 2 NTU were achieved, indicating a good wastewater treatment performance of the EMBR. This work provides a proof-of-concept study of an antifouling MBR with high wastewater treatment efficiency and electricity recovery, and implies that electrochemical control might provide another promising avenue to in-situ suppress the membrane fouling in MBRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2013.06.058 | DOI Listing |
Sci Total Environ
January 2025
Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University, 519087 Zhuhai, China.
The new EU Urban Wastewater Treatment Directive requires stricter limits introducing quaternary treatments and poses significant challenges to achieving a sustainable environment. Advanced membrane-based treatment processes combined with mathematical models can be a good solution for facing the challenges above. Most existing literature on membrane filtration models primarily focuses on membrane bioreactors, lacking mechanistic models on ultrafiltration (UF) membranes.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:
Residual aluminum (Al) is a growing pollutant in nanofiltration (NF) membrane-based drinking water treatment. To investigate the impact of distinct Al species fouling layers on gypsum scaling during NF, gypsum scaling tests were conducted on bare and three Al-conditioned (AlCl-, Al, and Al-) membranes. The morphology of gypsum, the role of Al species on Ca adsorption during gypsum scaling, and the interactions between gypsum crystals and Al-conditioned membranes were investigated.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.
Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.
View Article and Find Full Text PDFACS ES T Water
January 2025
Department of Civil Engineering, The University of British Columbia, 6250 Applied Sciences Lane, Vancouver, British Columbia V6T 1Z4, Canada.
The present study evaluated the performance of a full-scale gravity-driven membrane filtration system with passive hydraulic fouling control (PGDMF) for drinking water treatment in a small community over a 3-year period. The PGDMF system consistently met the design flow and regulated water quality/performance parameters (i.e.
View Article and Find Full Text PDFWater Sci Technol
January 2025
School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China E-mail:
Ultrafiltration membranes are widely used in the treatment of surface water. However, membrane fouling is a core issue that needs to be addressed in its application. Magnetotactic bacteria (MTB) show early film-forming and magnetotactic behaviour in the presence of external magnetic fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!