Interleukin-1beta reduces galactose transport in intestinal epithelial cells in a NF-kB and protein kinase C-dependent manner.

Vet Immunol Immunopathol

Physiology Unit, Department of Pharmacology and Physiology, Veterinary Faculty, University of Zaragoza, E-50013 Zaragoza, Spain.

Published: September 2013

Interleukins (IL), aside from their role in the regulation of the immune cascade, they have also been shown to modulate intestinal transport function. IL-1β is a potent inflammatory cytokine involved in many important cellular functions. The aim of this work was to study the in vitro effect of IL-1β on d-galactose transport across intestinal epithelia in rabbit jejunum and Caco-2 cells. The results showed that d-galactose intestinal absorption was diminished in IL-1β treated jejunum rabbits without affecting the Na(+), K(+)-ATPase activity. The presence of IL-1 cell-surface receptors was confirmed by addition to tissue of a specific IL-1 receptor antagonist (IL-1ra). The cytokine did not inhibit either the uptake of d-galactose nor modified the sodium-glucose transport (SGLT1) protein levels in the brush border membrane vesicles, suggesting an indirect IL effect. The IL-inhibition was significantly reversed in the presence of inhibitors of protein kinase C (PKC) and mitogen-activated protein kinases (MAPKs). The proteasome selective inhibitor completely abolished the IL-effect. Furthermore, the cytokine inhibition on galactose transport related to NF-kB activation was also confirmed in Caco-2 cells. In summary, the direct addition of IL-1β to intestinal epithelia inhibits d-galactose transport by a possible reduction in the SGLT1 activity. This event may be mediated by several transduction pathways activated during the inflammatory processes related to several protein kinases and nuclear factor, NF-kB. The IL-effect is independent of hormonal milieu and nervous stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetimm.2013.06.016DOI Listing

Publication Analysis

Top Keywords

galactose transport
8
transport intestinal
8
protein kinase
8
d-galactose transport
8
intestinal epithelia
8
caco-2 cells
8
protein kinases
8
transport
6
intestinal
5
protein
5

Similar Publications

This article aims to analyze the therapeutic effect and probe into the mechanism of Sanhuang Hushen Fangshuai Decoction in treating chronic kidney disease(CKD) based on metabolomics and bioinformatics. The patients with stage 3-4 CKD diagnosed and treated in the Changzhou Hospital of Traditional Chinese Medicine from June 2023 to March 2024 were enrolled in this study. The patients were treated with Sanhuang Hushen Fangshuai Decoction, and the therapeutic effect was evaluated.

View Article and Find Full Text PDF

The aim of this study was to investigate the underlying mechanism of chrysophanol(Chr) in reducing inflammation and foam cell formation induced by oxidized low-density lipoprotein(ox-LDL) and to investigate the targets and pathways related to effects of Chr on coronary atherosclerosis, providing a theoretical basis for the development of new clinical drugs. RAW264.7 macrophages were cultured in vitro, and after determining the appropriate concentrations of Chr and ox-LDL for treating RAW264.

View Article and Find Full Text PDF

SLC35A2 modulates paramyxovirus fusion events during infection.

PLoS Pathog

January 2025

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America.

Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized eGFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection.

View Article and Find Full Text PDF

The mitochondriotropic antioxidants AntiOxBEN and AntiOxCIN are structurally-similar but differentially alter energy homeostasis in human skin fibroblasts.

Biochim Biophys Acta Bioenerg

January 2025

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.

Mitochondrial dysfunction and increased reactive oxygen species (ROS) generation play an import role in different human pathologies. In this context, mitochondrial targeting of potentially protective antioxidants by their coupling to the lipophilic triphenylphosphonium cation (TPP) is widely applied. Employing a six‑carbon (C) linker, we recently demonstrated that mitochondria-targeted phenolic antioxidants derived from gallic acid (AntiOxBEN) and caffeic acid (AntiOxCIN) counterbalance oxidative stress in primary human skin fibroblasts by activating ROS-protective mechanisms.

View Article and Find Full Text PDF

Hypercalcemia and co-occurring TBX1 mutation in Glycogen Storage Disease Type Ib: case report.

BMC Med Genomics

January 2025

Laboratory of Clinical Immunology, Inflammation, and Allergy (LICIA), Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco.

Glycogen Storage Disease Type Ib (GSD-Ib) is a rare autosomal recessive metabolic disorder caused by mutations in SLC37A4, leading to a deficiency in glucose-6-phosphate translocase. This disorder is characterized by impaired glycogenolysis and gluconeogenesis, resulting in clinical and metabolic manifestations. We report a three-month-old Moroccan female patient presenting with doll-like facies, hepatomegaly, dysmorphic features, and developmental delays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!