Objective: The regulatory mechanisms responsible for acute exercise-induced expression of monocarboxylate transporters MCT1 and MCT4 mRNA in skeletal muscle remain unclear. 5'-adenosine-activated protein kinase (AMPK) is a key signaling molecule that regulates gene expression at the mRNA level. We examined whether AMPK activation is involved in acute exercise-induced expression of MCT1 and MCT4 mRNA in fast-twitch muscle.

Materials/methods: Male Sprague-Dawley rats were subjected to an acute bout of either 5min high-intensity intermittent swimming (HIS) or 6-h low-intensity prolonged swimming (LIS). The effects of acute exercise on the phosphorylation of AMPK (p-AMPK), calcium/calmodulin pendent kinase II (p-CaMKII), p38 mitogen-activated protein kinase (p-p38MAPK), and MCTs mRNA were analyzed in vivo. To observe the direct effects of AMPK activation on MCTs mRNA, the effects of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), caffeine, and dantrolene were analyzed in vitro using an isolated muscle incubation model.

Results: The p-AMPK increased in response to both HIS and LIS, although the p-CaMKII and p-p38MAPK were increased only following HIS. Irrespective of exercise intensity, MCT1 and MCT4 mRNA was also transiently upregulated by both HIS and LIS. Direct exposure of the epitrochlearis muscle to 0.5mmol/L AICAR or 1mmol/L caffeine, which activated p-AMPK increased both MCT1 and MCT4 mRNA levels. When pAMPK was inhibited by dantrolene, neither MCT1 nor MCT4 mRNA was increased.

Conclusion: These results suggest that acute exercise-induced increases in MCT1 and MCT4 mRNA expression may be possibly mediated by AMPK activation, at least in part in fast-twitch muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.metabol.2013.06.010DOI Listing

Publication Analysis

Top Keywords

mct1 mct4
28
mct4 mrna
28
acute exercise-induced
16
exercise-induced expression
12
ampk activation
12
mrna
10
expression monocarboxylate
8
monocarboxylate transporters
8
transporters mct1
8
mrna fast-twitch
8

Similar Publications

Background: Testicular germ cell tumors are the most common solid malignancies in young men, with increasing incidence worldwide. Broadly classified into seminomas and non-seminomas, they exhibit distinct biological behaviors and responses to treatment. Although metabolic reprogramming is an acknowledged cancer hallmark, metabolic pathways in testicular germ cell tumors remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • - Lactate transport is vital for cancer cell survival, but current drugs targeting the MCT1 and MCT4 transporters have shown limited success in clinical applications, mostly due to issues with isoform expression in tumors and the lengthy time required for new inhibitors to reach human trials.
  • - Researchers conducted a drug screen using FDA-approved substances to find potential MCT inhibitors, identifying that several drug classes, including non-steroidal anti-inflammatory drugs (NSAIDs), can inhibit MCT1 with moderate effectiveness.
  • - Specifically, among continuing investigations on NSAIDs for their ability to inhibit MCT1, piroxicam emerged as a promising candidate with relevant dosages that could enhance anticancer therapy by potentially working alongside existing treatments.
View Article and Find Full Text PDF

Background And Aim: Head and neck paragangliomas (HNPGN) are tumours that carry significant morbidity The role of the stroma in the pathogenesis of HNPGN is not completely understood. This study explores the profile of fibroblasts and macrophages in HNPGN.

Methods: Ten patients undergoing HNPGN surgery were recruited.

View Article and Find Full Text PDF

Impact of Circadian Clock Gene Overexpression on Rumen Epithelial Cell Dynamics and VFA Transport Protein Expression.

Int J Mol Sci

November 2024

Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.

The circadian gene is recognized for its regulatory effects on cell proliferation and lipid metabolism across various non-ruminant cells. This study investigates the influence of gene overexpression on goat rumen epithelial cells using a constructed pcDNA3.1- plasmid, assessing its impact on circadian gene expression, cell proliferation, and mRNA levels of short-chain fatty acid (SCFA) transporters, alongside genes related to lipid metabolism, cell proliferation, and apoptosis.

View Article and Find Full Text PDF

It has been previously established that breast cancer cells exhibit high expression of the monocarboxylate (lactate) transporters (MCT1 and/or MCT4) and carbonic anhydrase IX (CAIX) and form a functional metabolon for proton-coupled lactate export, thereby stabilizing intracellular pH. CD147 is the MCT accessory protein that facilitates the creation of the MCT/CAIX complex. This study describes how the small molecule Beta-Galactose 2C (BGal2C) blocks the physical and functional interaction between CAIX and either MCT1 or MCT4 in Xenopus oocytes, which reduces the rate of proton and lactate flux with an IC of ~90 nM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!