Continuing the study of the physicochemical and biological properties of ruthenium-quinolone adducts, four novel complexes with the general formula [Ru([9]aneS3)(dmso-κS)(quinolonato-κ(2)O,O)](PF6), containing the quinolones levofloxacin (1), nalidixic acid (2), oxolinic acid (3), and cinoxacin (4), were prepared and characterized in solid state as well as in solution. Contrary to their organoruthenium analogues, these complexes are generally relatively stable in aqueous solution as substitution of the dimethylsulfoxide (dmso) ligand is slow and not quantitative, and a minor release of the quinolonato ligand is observed only in the case of 4. The complexes bind to serum proteins displaying relatively high binding constants. DNA binding was studied using UV-vis spectroscopy, cyclic voltammetry, and performing viscosity measurements of CT DNA solutions in the presence of complexes 1-4. These experiments show that the ruthenium complexes interact with DNA via intercalation. Possible electrostatic interactions occur in the case of compound 4, which also shows the most pronounced rate of hydrolysis. Compounds 2 and 4 also exhibit a weak inhibition of cathepsins B and S, which are involved in the progression of a number of diseases, including cancer. Furthermore, complex 2 displayed moderate cytotoxicity when tested on the HeLa cell line.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic401220xDOI Listing

Publication Analysis

Top Keywords

complexes
5
drugs attempts
4
attempts convert
4
convert quinolone
4
quinolone antibacterials
4
antibacterials potential
4
potential anticancer
4
anticancer agents
4
agents ruthenium
4
ruthenium continuing
4

Similar Publications

KRAS is a proto-oncogene that is found to be mutated in 15% of all metastatic cancers with high prevalence in pancreatic, lung, and colorectal cancers. Additionally, patients harboring KRAS mutations respond poorly to standard cancer therapy. As a result, KRAS is seen as an attractive target for targeted anticancer therapy.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities.

View Article and Find Full Text PDF

In the present study, we identified 22 significant SNPs, eight stable QTLs and 17 potential candidate genes associated with 100-seed weight in soybean. Soybean is an economically important crop that is rich in seed oil and protein. The 100-seed weight (HSW) is a crucial yield contributing trait.

View Article and Find Full Text PDF

BMP4 regulates differentiation of nestin-positive stem cells into melanocytes.

Cell Mol Life Sci

January 2025

Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.

Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!