Regulation and function of nuclear IκBα in inflammation and cancer.

Am J Clin Exp Immunol

Department of Biological Sciences, St. John's University New York, NY 11439, USA.

Published: July 2013

The nuclear translocation and accumulation of IκBα represents an important mechanism regulating transcription of NFκB-dependent pro-inflammatory and anti-apoptotic genes. The nuclear accumulation of IκBα can be induced by post-induction repression in stimulated cells, inhibition of the CRM1-dependent nuclear IκBα export by leptomycin B, and by the inhibition of the 26S proteasome. In addition, IκBα is constitutively localized in the nucleus of human neutrophils, likely contributing to the high rate of spontaneous apoptosis in these cells. In the nucleus, IκBα suppresses transcription of NFκB-dependent pro-inflammatory and anti-apoptotic genes, representing an attractive therapeutic target. However, the inhibition of NFκB-dependent genes by nuclear IκBα is promoter specific, and depends on the subunit composition of NFκB dimers and post-translational modifications of the recruited NFκB proteins. In addition, several recent studies have demonstrated an NFκB-independent role of the nuclear IκBα. In this review, we discuss the mechanisms leading to the nuclear accumulation of IκBα and its nuclear functions as potential targets for anti-inflammatory and anti-cancer therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3714182PMC

Publication Analysis

Top Keywords

nuclear iκbα
16
accumulation iκbα
12
iκbα
9
nuclear
8
transcription nfκb-dependent
8
nfκb-dependent pro-inflammatory
8
pro-inflammatory anti-apoptotic
8
anti-apoptotic genes
8
genes nuclear
8
nuclear accumulation
8

Similar Publications

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.

View Article and Find Full Text PDF

Objective: Polycystic ovary syndrome (PCOS) is a diverse condition with an unknown cause. The precise mechanism underlying ovulatory abnormalities in PCOS remains unclear. It is widely believed that malfunction of granulosa cells is the primary factor contributing to aberrant follicular formation in PCOS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!