Nuclear import is an essential step in small nuclear ribonucleoprotein (snRNP) biogenesis. Snurportin1 (SPN1), the import adaptor, binds to trimethylguanosine (TMG) caps on spliceosomal small nuclear RNAs. Previous studies indicated that vertebrate snRNP import requires importin-β, the transport receptor that binds directly to SPN1. We identify CG42303/snup as the Drosophila orthologue of human snurportin1 (SNUPN). Of interest, the importin-β binding (IBB) domain of SPN1, which is essential for TMG cap-mediated snRNP import in humans, is not well conserved in flies. Consistent with its lack of an IBB domain, we find that Drosophila SNUP (dSNUP) does not interact with Ketel/importin-β. Fruit fly snRNPs also fail to bind Ketel; however, the importin-7 orthologue Moleskin (Msk) physically associates with both dSNUP and spliceosomal snRNPs and localizes to nuclear Cajal bodies. Strikingly, we find that msk-null mutants are depleted of the snRNP assembly factor, survival motor neuron, and the Cajal body marker, coilin. Consistent with a loss of snRNP import function, long-lived msk larvae show an accumulation of TMG cap signal in the cytoplasm. These data indicate that Ketel/importin-β does not play a significant role in Drosophila snRNP import and demonstrate a crucial function for Msk in snRNP biogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3771954 | PMC |
http://dx.doi.org/10.1091/mbc.E13-03-0118 | DOI Listing |
Nat Commun
February 2024
Laboratory of Functional Genomics, Department of Medical Genetics, Koç University, School of Medicine (KUSoM), Istanbul, Turkey.
PLoS Genet
October 2020
Hengyang College of Medicine, University of South China, Hengyang, China.
The 2,2,7-trimethylguanosine (TMG) cap is one of the first identified modifications on eukaryotic RNAs. TMG, synthesized by the conserved Tgs1 enzyme, is abundantly present on snRNAs essential for pre-mRNA splicing. Results from ex vivo experiments in vertebrate cells suggested that TMG ensures nuclear localization of snRNAs.
View Article and Find Full Text PDFSci China Life Sci
October 2020
Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230027, China.
Mammalian mitochondria have small genomes encoding very limited numbers of proteins. Over one thousand proteins and noncoding RNAs encoded by the nuclear genome must be imported from the cytosol into the mitochondria. Here, we report the identification of hundreds of circular RNAs (mecciRNAs) encoded by the mitochondrial genome.
View Article and Find Full Text PDFJ Biol Chem
March 2020
School of Life Science and Technology, the Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China. Electronic address:
Renpenning syndrome belongs to a group of X-linked intellectual disability disorders. The Renpenning syndrome-associated protein PQBP1 (polyglutamine-binding protein 1) is intrinsically disordered, associates with several splicing factors, and is involved in pre-mRNA splicing. PQBP1 uses its C-terminal YxxPxxVL motif for binding to the splicing factor TXNL4A (thioredoxin like 4A), but the biological function of this interaction has yet to be elucidated.
View Article and Find Full Text PDFNeurobiol Dis
May 2020
Istituto di Farmacologia Traslazionale (IFT), CNR, 00133 Rome, Italy. Electronic address:
Activation of the integrated stress response (ISR), alterations in nucleo-cytoplasmic (N/C) transport and changes in alternative splicing regulation are all common traits of the pathogenesis of Amyotrophic Lateral Sclerosis (ALS). However, whether these processes act independently from each other, or are part of a coordinated mechanism of gene expression regulation that is affected in pathogenic conditions, is still rather undefined. To answer these questions, in this work we set out to characterise the functional connections existing between ISR activation and nucleo-cytosol trafficking and nuclear localization of spliceosomal U-rich small nuclear ribonucleoproteins (UsnRNPs), the core constituents of the spliceosome, and to study how ALS-linked mutant proteins affect this interplay.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!