5-Halomethylfurfurals can be considered as platform chemicals of high reactivity making them useful for the preparation of a variety of important compounds. In this study, a one-pot route for the conversion of carbohydrates into 5-chloromethylfurfural (CMF) in a simple and efficient (HCl-H3PO4/CHCl3) biphasic system has been investigated. Monosaccharides such as D-fructose, D-glucose and sorbose, disaccharides such as sucrose and cellobiose and polysaccharides such as cellulose were successfully converted into CMF in satisfactory yields under mild conditions. Our data shows that when using D-fructose the optimum yield of CMF was about 47%. This understanding allowed us to extent our work to biomaterials, such as wood powder and wood pulps with yields of CMF obtained being comparable to those seen with some of the enumerated mono and disaccharides. Overall, the proposed (HCl-H3PO4/CHCl3) optimized biphasic system provides a simple, mild, and cost-effective means to prepare CMF from renewable resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269830 | PMC |
http://dx.doi.org/10.3390/molecules18077675 | DOI Listing |
ChemSusChem
October 2024
Department of Chemistry, Centre for Analysis and Synthesis, Lund University, SE-221 00, Lund, Sweden.
The development of recyclable crosslinked thermosetting fibres is a challenging research topic. In the present work, we have designed and synthesized polyurethane fibres from fructose-derived 5-chloromethylfurfural (CMF) and lignin-derived monomeric phenols. The greenhouse gas emissions associated with the production of CMF showed comparable results to that of 5-hydroxymethylfurfural (HMF), a high potential sugar-based platform molecule.
View Article and Find Full Text PDFChemSusChem
October 2024
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD, Amsterdam, The Netherlands.
The synthesis of 5-(halomethyl)furfurals (XMFs, X=F, Cl, Br, I), including 5-(chloromethyl)furfural (CMF), 5-(bromomethyl)furfural (BMF), 5-(iodomethyl)furfural (IMF), and 5-(fluoromethyl)furfural (FMF), from biomass represents a pivotal advancement in renewable chemistry and engineering. Harnessing waste biomass as a raw material offers a sustainable alternative to fossil-based resources, mitigating environmental degradation and addressing pressing energy needs. CMF and BMF, characterized by their enhanced stability over the hydroxyl analog, 5-(hydroxymethyl)furfural (HMF), exhibit promise as renewable building blocks for scale-up and commercialization.
View Article and Find Full Text PDFACS Sustain Chem Eng
December 2023
Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1090 GD Amsterdam, The Netherlands.
The importance of reducing the strong dependence of the chemical industry on fossil feedstock is no longer a debate. Above-the-ground carbon is abundant, but scalable technologies to supply alternatives to fossil-fuel-derived chemicals and/or materials at the world scale are still not available. Lignocellulosic biomass is the most available carbon source, and a first requirement for its valorization is the complete saccharification of its sugar-bearing components.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2023
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
N-heterocyclic carbene (NHC)-catalyzed enantioselective Mannich-type reactions of the biomass-derived platform compound 5-(chloromethyl)furfural (CMF) with imines were developed. A series of high-value-added chiral amines were afforded in good to high yields with excellent regio- and enantioselectivities. The bifunctional NHC derived from ʟ-pyroglutamic acid efficiently steered the remote addition of the trienolate intermediate to the imine in a highly stereocontrolled manner.
View Article and Find Full Text PDFChemSusChem
March 2023
Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA.
The 5-(chloromethyl)furfural (CMF) derivative ethyl 5-(chloromethyl)furan-2-carboxylate undergoes two-electron electrochemical reduction in a simple, undivided cell to give the corresponding furylogous enolate anion, which can either be quenched with carbon dioxide to give a 5-(carboxymethyl)furan-2-carboxylate or with hydrogen ion to give a 5-methylfuran-2-carboxylate, thereby expanding the derivative scope of CMF as a biobased platform molecule.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!