Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
By using a two-step polymerization process, it was possible to encapsulate clay platelets within polymer particles dispersed in water. First, seed polymer particles with chemically bonded clay were obtained by batch miniemulsion polymerization. Then, the clay was buried within the particles by the addition of neat monomer in a second step. The final stable dispersions can have a solids content of up to 50 wt %. Transmission electron microscopy images clearly show the presence of clay platelets inside the polymer colloids, although they are not totally exfoliated. The obtained nanocomposites showed an increase in both the storage modulus in the rubbery state and the water resistance as the clay content increases. The approach presented here might be useful for encapsulating other high-aspect ratio nanofillers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la401301s | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!