Selective androgen receptor modulators: in vitro and in vivo metabolism and analysis.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

a European Union Reference Laboratory , RIKILT - Institute of Food Safety, Wageningen , the Netherlands.

Published: April 2014

AI Article Synopsis

  • The study investigated the metabolism of seven selective androgen receptor modulators (SARMs) using bovine liver enzymes to identify metabolites through advanced liquid chromatography and mass spectrometry techniques.
  • Key metabolic processes included monohydroxylation, nitro-reduction, dephenylation, and demethylation, with the in vivo study on ostarine revealing additional pathways like glucuronidation and sulfation in a male calf's urine.
  • The analytical method developed for detecting SARMs in bovine urine met EU validation standards, demonstrating high sensitivity and reproducibility, making it effective for future regulatory screening.

Article Abstract

For future targeted screening in National Residue Control Programmes, the metabolism of seven SARMs, from the arylpropionamide and the quinolinone classes, was studied in vitro using S9 bovine liver enzymes. Metabolites were detected and identified with ultra-performance liquid chromatography (UPLC) coupled to time-of-flight mass spectrometry (ToF-MS) and triple quadrupole mass spectrometry (QqQ-MS). Several metabolites were identified and results were compared with literature data on metabolism using a human cell line. Monohydroxylation, nitro-reduction, dephenylation and demethylation were the main S9 in vitro metabolic routes established. Next, an in vivo study was performed by oral administration of the arylpropionamide ostarine to a male calf and urine samples were analysed with UPLC-QToF-MS. Apart from two metabolites resulting from hydroxylation and dephenylation that were also observed in the in vitro study, the bovine in vivo metabolites of ostarine resulted in glucuronidation, sulfation and carboxylation, combined with either a hydroxylation or a dephenylation step. As the intact mother compounds of all SARMs tested are the main compounds present after in vitro incubations, and ostarine is still clearly present in the urine after the in vivo metabolism study in veal calves, the intact mother molecules were selected as the indicator to reveal treatment. The analytical UPLC-QqQ-MS/MS procedure was validated for three commercially available arylpropionamides according to European Union criteria (Commission Decision 2002/657/EC), and resulted in decision limits ranging from 0.025 to 0.05 µg l⁻¹ and a detection capability of 0.025 µg l⁻¹ in all cases. Adequate precision and intra-laboratory reproducibility (relative standard deviation below 20%) were obtained for all SARMs and the linearity was 0.999 for all compounds. This newly developed method is sensitive and robust, and therefore useful for confirmation and quantification of SARMs in bovine urine samples for residue control programmes and research purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1080/19440049.2013.810346DOI Listing

Publication Analysis

Top Keywords

vivo metabolism
8
residue control
8
control programmes
8
mass spectrometry
8
urine samples
8
hydroxylation dephenylation
8
intact mother
8
µg l⁻¹
8
vitro
5
selective androgen
4

Similar Publications

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

There are few in vitro models available to study microglial physiology in a homeostatic context. Recent approaches include the human induced pluripotent stem cell model, but these can be challenging for large-scale assays and may lead to batch variability. To advance our understanding of microglial biology while enabling scalability for high-throughput assays, we developed an inducible immortalized murine microglial cell line using a tetracycline expression system.

View Article and Find Full Text PDF

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Identification of a novel TOP2B::AFF2 fusion gene in B-cell acute lymphoblastic leukemia.

Sci Rep

January 2025

Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.

Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!