Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The oxygen absorbance was studied at wavelengths 200-270 nm in Schumann-Runge system behind the front of a strong shock wave. Using these data, the vibrational temperature Tv behind the front of shock waves was measured at temperatures 4000-10,800 K in undiluted oxygen. Determination of Tv was based on the measurements of time histories of absorbance for two wavelengths behind the shock front and on the results of detail calculations of oxygen absorption spectrum. Solving the system of standard quasi-one-dimensional gas dynamics equations and using the measured vibrational temperature, the time evolution of oxygen concentration and other gas parameters in each experiment were calculated. Based on these data, the oxygen dissociation rate constants were obtained for thermal equilibrium and thermal non-equilibrium conditions. Furthermore, the oxygen vibrational relaxation time was also determined at high temperatures. Using the experimental data, various theoretical and empirical models of high-temperature dissociation were tested, including the empirical model proposed in the present work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4813070 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!