A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000-10,800 K. | LitMetric

The oxygen absorbance was studied at wavelengths 200-270 nm in Schumann-Runge system behind the front of a strong shock wave. Using these data, the vibrational temperature Tv behind the front of shock waves was measured at temperatures 4000-10,800 K in undiluted oxygen. Determination of Tv was based on the measurements of time histories of absorbance for two wavelengths behind the shock front and on the results of detail calculations of oxygen absorption spectrum. Solving the system of standard quasi-one-dimensional gas dynamics equations and using the measured vibrational temperature, the time evolution of oxygen concentration and other gas parameters in each experiment were calculated. Based on these data, the oxygen dissociation rate constants were obtained for thermal equilibrium and thermal non-equilibrium conditions. Furthermore, the oxygen vibrational relaxation time was also determined at high temperatures. Using the experimental data, various theoretical and empirical models of high-temperature dissociation were tested, including the empirical model proposed in the present work.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4813070DOI Listing

Publication Analysis

Top Keywords

oxygen dissociation
8
vibrational relaxation
8
temperatures 4000-10800
8
vibrational temperature
8
oxygen
6
investigation oxygen
4
vibrational
4
dissociation vibrational
4
relaxation temperatures
4
4000-10800 oxygen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!