The X+ 2Πg, A+ 2Πu, B+ 2Δu, and a+ 4Σu(-) electronic states of Cl2(+) studied by high-resolution photoelectron spectroscopy.

J Chem Phys

Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland.

Published: July 2013

Partially rotationally resolved pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the three isotopomers ((35)Cl2, (35)Cl(37)Cl, and (37)Cl2) of Cl2 have been recorded in the wavenumber ranges 92,500-96,500 cm(-1), corresponding to transitions to the low vibrational levels of the X(+) (2)Πg (Ω = 3∕2, 1∕2) ground state of Cl2 (+), and 106,750-115,500 cm(-1), where the a(+) (4)Σu (-)←X(1)Σg (+), A(+) (2)Πu←X(1)Σg (+), and B(+) (2)Δu←X(1)Σg (+) band systems overlap with transitions to high vibrational levels (v(+) > 25) of the X(+) state. The observation of Franck-Condon-forbidden transitions to vibrational levels of the X(+) state of the cation with v(+) ≥ 25 is rationalized by a mechanism involving vertical excitation of predissociative Rydberg states of mixed singlet-triplet character with an A(+) ion core which are coupled to Rydberg states converging to high-v(+) levels of the X(+) state. The same mechanism is proposed to also be responsible for the observation of Cl(+) - Cl(-) ion pairs and quartet states in the photoionization of Cl2. The potential energy function of the X(+) state of Cl2 (+) was determined in a direct fit to the experimental data. Transitions to vibrational levels of the A(+) (2)Πu, 3∕2 and B(+) (2)Δu, 3∕2 states of Cl2 (+) could be identified using the results of a recent analysis of the strong perturbation between the A(+) (2)Πu, 3∕2 and B(+) (2)Δu, 3∕2 states of Cl2 (+) observed in the A(+) - X(+) band system [Gharaibeh et al., J. Chem. Phys. 137, 194317 (2012)], and transitions to several vibrational levels of the upper spin-orbit component ((2)Πu, 1∕2) of the A(+) state were detected in the photoelectron spectrum of Cl2 (+). The a(+) (4)Σu (-)←X(1)Σg (+) photoelectron band system, which is nominally forbidden by single-photon ionization from the ground state was also observed for the first time and its vibrational and spin-orbit structures were analyzed. The (4)Σu (-) state is split into two spin-orbit components with Ω = 1∕2 and Ω = 3∕2, separated by 37.5 cm(-1). The vibrational energy level structure of both components is regular, which indicates that the splitting results from the interaction with one or more distant ungerade Ω = 1∕2 or Ω = 3∕2 electronic states.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4812376DOI Listing

Publication Analysis

Top Keywords

vibrational levels
20
levels state
12
transitions vibrational
12
electronic states
8
state
8
ground state
8
state cl2
8
4Σu -←x1Σg
8
rydberg states
8
a+ 2Πu 3∕2
8

Similar Publications

Quantifying the Chirality of Vibrational Modes in Helical Molecular Chains.

Phys Rev Lett

December 2024

Tel Aviv University, University of Pennsylvania, Department of Chemistry, Philadelphia, Pennsylvania 19104, USA and School of Chemistry, Tel Aviv 69978, Israel.

Chiral phonons have been proposed to be involved in various physical phenomena, yet the chirality of molecular normal modes has not been well defined mathematically. Here we examine two approaches for assigning and quantifying the chirality of molecular normal modes in double-helical molecular wires with various levels of twist. First, associating with each normal mode a structure obtained by imposing the corresponding motion on a common origin, we apply the continuous chirality measure (CCM) to quantitatively assess the relationship between the chirality-weighted normal mode spectrum and the chirality of the underlying molecular structure.

View Article and Find Full Text PDF

A protocol for the investigation of the intramolecular vibrational energy redistribution problem: the isomerization of nitrous acid as a case of study.

Phys Chem Chem Phys

January 2025

Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã, São Paulo, 05508-900, Brazil.

The conformational isomerization of nitrous acid (HONO) promoted by excitation of the or stretching normal coordinates is the first observed case of an infrared-induced photochemical reaction. The energy captured by the excited normal modes is redistributed into a highly excited vibrational level of the torsion normal coordinate, which is the isomerization reaction coordinate. Herein, we present simple numerical methods to qualitatively investigate the coupling between the normal coordinates and the possible gateways for vibrational energy redistribution leading to the isomerization process.

View Article and Find Full Text PDF

The rigid Fabry-Pérot (F-P) cavity has emerged as the preferred core sensing component for optical pressure, vibration, and acoustic sensing in harsh environments, owing to its high reliability and structural stability. However, due to the inadequate temperature resistance of the optical dielectric film, maintaining a high level of precision in the rigid F-P cavity at elevated temperatures proves to be challenging. Volume Bragg grating (VBG) is a three-dimensional optical element modified by a femtosecond laser within a transparent glass medium to create a periodic refractive index distribution.

View Article and Find Full Text PDF

Electric-field oscillations are now experimentally accessible in the THz-to-PHz frequency range. Their measurement delivers the most comprehensive information content attainable by optical spectroscopy - if performed with high sensitivity. Yet, the trade-off between bandwidth and efficiency associated with the nonlinear mixing necessary for field sampling has so far strongly restricted sensitivity in applications such as field-resolved spectroscopy of molecular vibrations.

View Article and Find Full Text PDF

Water is a critical component in polyelectrolyte anion exchange membranes (AEMs). It plays a central role in ion transport in electrochemical systems. Gaining a better understanding of molecular transport and conductivity in AEMs has been challenged by the lack of a general methodology capable of capturing and connecting water dynamics, water structure, and ionic transport over time and length scales ranging from those associated with individual bond vibrations and molecular reorientations to those pertaining to macroscopic AEM performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!