The boric oxide deposition was performed to improve the oxidation resistivity of carbon nanofiber (CNF) from electrospinning at elevated temperatures. The stabilized electrospun polyacrylonitrile (PAN) nanofibers were coated with boric oxide, followed by heat treatment up to 1000, 1200, and 1400 degrees C in an inert nitrogen atmosphere. The relative oxidation resistance of boric oxide-coated CNFs showed oxidation resistive property, which was determined by weight loss after running a thermogravimetric analyzer (TGA) under air flow. The data were used for the calculations of activation energies through Arrhenius plot. The oxidation resistance of the boric oxide-coated CNFs was depended on the heat treatment temperature, the higher the temperature more resistive to oxidation. The boric oxide-coated CNFs showed extended oxidation resistivity as remaining 40-83% (w) of the original weight at the high temperature 1000 degrees C under air.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2013.7065 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!