A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Disruption of TSC1/2 signaling complex reveals a checkpoint governing thymic CD4+ CD25+ Foxp3+ regulatory T-cell development in mice. | LitMetric

Disruption of TSC1/2 signaling complex reveals a checkpoint governing thymic CD4+ CD25+ Foxp3+ regulatory T-cell development in mice.

FASEB J

2Y.Z., Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Rd. 1-5, Chaoyang District, Beijing, China 100101.

Published: October 2013

Thymic-derived CD4(+)CD25(+)Foxp3(+) natural regulatory T (nTreg) cells are essential for the maintenance of peripheral immune tolerance. Signaling pathways that drive immature thymic progenitors to differentiate into CD4(+)CD25(+)Foxp3(+) nTreg cells need to be elucidated. The precise role of the TSC1/2 complex, a critical negative regulator of mammalian target of rapamycin (mTOR), in thymic CD4(+)CD25(+)Foxp3(+) nTreg-cell development remains elusive. In the present study, we found that the percentage and cell number of thymic CD4(+)CD25(+)Foxp3(+) nTreg cells were significantly increased in T-cell-specific TSC1-knockout (TSC1KO) mice. Nevertheless, the levels of CD4(+)CD25(+)Foxp3(-) nTreg precursors in TSC1KO thymus were indistinguishable from those in wild-type mice. TSC1KO CD4(+)CD25(+)Foxp3(+) nTreg cells showed normal cell death but enhanced proliferative response to IL-2 in a STAT5-dependent manner. Rapamycin (Rapa) treatment failed to rescue but rather increased the frequency of CD4(+)CD25(+)Foxp3(+) nTreg cells in TSC1KO and RictorKO mice. The percentage and cell number of thymic CD4(+)CD25(+)Foxp3(+) nTreg cells were significantly increased in T-cell-specific RictorKO mice but not in PtenKO mice. Collectively, our studies suggest that TSC1 plays an important role in regulating thymic CD4(+)CD25(+)Foxp3(+) nTreg-cell development via a Rapa-resistant and mTORC2-dependent signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.13-235408DOI Listing

Publication Analysis

Top Keywords

ntreg cells
24
cd4+cd25+foxp3+ ntreg
20
thymic cd4+cd25+foxp3+
16
cd4+cd25+foxp3+
8
cd4+cd25+foxp3+ ntreg-cell
8
ntreg-cell development
8
percentage cell
8
cell number
8
number thymic
8
cells increased
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!