Cilostazol ameliorates warfarin-induced hemorrhagic transformation after cerebral ischemia in mice.

Stroke

From the Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan (A.K., Y.E., K.M., Y.S., K.T., M.S., H.H.); and First Institute of New Drug Discovery, Otsuka Pharmaceutical Co Ltd, Tokushima, Japan (H.I.).

Published: October 2013

Background And Purpose: Although long-term treatment with the oral anticoagulant warfarin is widely used to prevent cardioembolic ischemic stroke, it has been reported that warfarin can exacerbate hemorrhagic transformation (HT) after cerebral ischemia. We investigated whether cilostazol, a phosphodiesterase-III inhibitor, suppressed the warfarin-induced HT after cerebral ischemia in mice.

Methods: Male ddY mice were treated with oral warfarin before 3-hour middle cerebral artery occlusion followed by 21-hour reperfusion to induce HT. The duration of warfarin pretreatment was determined by measurement of prothrombin time-international normalized ratio value. Cilostazol or vehicle was administered by intraperitoneal injection immediately after reperfusion. The infarct volume, brain swelling, and brain hemoglobin content were evaluated at 24 hours after middle cerebral artery occlusion. We also evaluated the survival rate of each treated group for 7 days after surgery. To investigate the mechanism underlying cilostazol's effects, the proteins involved in vascular endothelial integrity were investigated using Western blotting.

Results: HT volume was exacerbated by warfarin treatment, and cilostazol (3 mg/kg, i.p.) suppressed this exacerbation (sham, mean±SD, 29.2±13.4 mg/dL; vehicle, 33.3±11.9 mg/dL; warfarin, 379.4±428.9 mg/dL; warfarin+cilostazol 1 mg/kg, 167.5±114.2 mg/dL; warfarin+cilostazol 3 mg/kg, 116.9±152.3 mg/dL). Furthermore, cilostazol improved survival rate and upregulated the expression of tight junction proteins and vascular endothelial cadherin.

Conclusions: Cilostazol reduced the warfarin-related risk of HT after ischemia by protecting the vascular endothelial cells. This result suggested that cilostazol administration in patients with acute ischemic stroke might reduce HT.

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.113.001183DOI Listing

Publication Analysis

Top Keywords

cerebral ischemia
12
vascular endothelial
12
hemorrhagic transformation
8
transformation cerebral
8
ischemic stroke
8
middle cerebral
8
cerebral artery
8
artery occlusion
8
survival rate
8
mg/dl warfarin+cilostazol
8

Similar Publications

Background: Delayed cerebral ischemia (DCI) is a primary contributor to death after subarachnoid hemorrhage (SAH), with significant incidence. Therefore, early determination of the risk of DCI is an urgent need. Machine learning (ML) has received much attention in clinical practice.

View Article and Find Full Text PDF

Background: Intravascular injection of liquid adhesive hemostats is a rare but serious complication that can result in cerebral thromboembolism.

Observations: A 64-year-old female underwent orbitozygomatic craniotomy for posterior communicating artery aneurysm clipping with the routine use of a flowable hemostatic agent during extradural dissection. After placement of the aneurysm clip, flow was confirmed through the parent vessel and nearby branches.

View Article and Find Full Text PDF

High concentrations of neutrophil degranulation products in the plasma and thrombi are poor prognostic indicators in patients with acute ischemic stroke (AIS). This study aimed to identify candidate effectors capable of mediating neutrophil degranulation post-AIS, and to reveal their underlying epigenetic mechanisms. Microarrays and ChIP-seq were applied to analyze the neutrophils of patients with AIS.

View Article and Find Full Text PDF

Edaravone Mitigates Hippocampal Neuronal Death and Cognitive Dysfunction by Upregulating BDNF Expression in Neonatal Hypoxic-Ischemic Rats.

Int J Dev Neurosci

February 2025

Department of Digestive and Nutrition, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.

Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe neurological injury during infancy, often resulting in long-term cognitive deficits. This study aimed to investigate the neuroprotective effects of Edaravone (EDA), a free radical scavenger, and elucidate the potential role of brain-derived neurotrophic factor (BDNF) in mediating these effects in neonatal HIE rats. Using the Rice-Vannucci model, HIE was induced in neonatal rats, followed by immediate administration of EDA after the hypoxic-ischemic insult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!