BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency.

Clin Cancer Res

Authors' Affiliations: BioMarin Pharmaceutical Inc., Novato, California; Cancer Research UK Gene Function Laboratory; and The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom.

Published: September 2013

Purpose: PARP1/2 inhibitors are a class of anticancer agents that target tumor-specific defects in DNA repair. Here, we describe BMN 673, a novel, highly potent PARP1/2 inhibitor with favorable metabolic stability, oral bioavailability, and pharmacokinetic properties.

Experimental Design: Potency and selectivity of BMN 673 was determined by biochemical assays. Anticancer activity either as a single-agent or in combination with other antitumor agents was evaluated both in vitro and in xenograft cancer models.

Results: BMN 673 is a potent PARP1/2 inhibitor (PARP1 IC50 = 0.57 nmol/L), but it does not inhibit other enzymes that we have tested. BMN 673 exhibits selective antitumor cytotoxicity and elicits DNA repair biomarkers at much lower concentrations than earlier generation PARP1/2 inhibitors (such as olaparib, rucaparib, and veliparib). In vitro, BMN 673 selectively targeted tumor cells with BRCA1, BRCA2, or PTEN gene defects with 20- to more than 200-fold greater potency than existing PARP1/2 inhibitors. BMN 673 is readily orally bioavailable, with more than 40% absolute oral bioavailability in rats when dosed in carboxylmethyl cellulose. Oral administration of BMN 673 elicited remarkable antitumor activity in vivo; xenografted tumors that carry defects in DNA repair due to BRCA mutations or PTEN deficiency were profoundly sensitive to oral BMN 673 treatment at well-tolerated doses in mice. Synergistic or additive antitumor effects were also found when BMN 673 was combined with temozolomide, SN38, or platinum drugs.

Conclusion: BMN 673 is currently in early-phase clinical development and represents a promising PARP1/2 inhibitor with potentially advantageous features in its drug class.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6485449PMC
http://dx.doi.org/10.1158/1078-0432.CCR-13-1391DOI Listing

Publication Analysis

Top Keywords

bmn 673
44
parp1/2 inhibitor
16
dna repair
16
potent parp1/2
12
parp1/2 inhibitors
12
bmn
11
0
10
673 novel
8
novel highly
8
highly potent
8

Similar Publications

Immune checkpoint inhibitors (ICIs) have revolutionized treatment for several tumor indications without demonstrated benefit for ovarian cancer patients. To improve the therapeutic ratio of ICIs in ovarian cancer patients, several different clinical trials are testing combinations with poly (ADP-ribose) polymerase (PARP) inhibitors. Comparing the immunomodulatory effects of clinically advanced PARP inhibitors may help to identify the best partner to combine with ICIs.

View Article and Find Full Text PDF

DNA damage response mutations enhance the antitumor efficacy of ATR and PARP inhibitors in cholangiocarcinoma cell lines.

Oncol Lett

March 2025

Program in Translational Medicine, Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samutprakarn 10540, Thailand.

Cholangiocarcinoma (CCA) is a biliary tract carcinoma that is challenging to treat due to its heterogeneity and limited treatment options. Genetic alterations in DNA damage response (DDR) pathways and homologous recombination (HR) defects are common in CCA. This has prompted interest in the use of ataxia telangiectasia and Rad3-related protein (ATR) and poly(ADP-ribose) polymerase (PARP) inhibitors to treat CCA.

View Article and Find Full Text PDF

Background: Poly (ADP-Ribose) polymerase inhibitors are approved for treatment of tumors with BRCA1/2 and other homologous recombination repair (HRR) mutations. However, clinical responses are often not durable and treatment may be detrimental in advanced cancer due to excessive toxicities. Thus we are seeking alternative therapeutics to enhance PARP-directed outcomes.

View Article and Find Full Text PDF

Cervical cancer is the fourth most common cancer among women globally, and studies have shown that genetic variants play a significant role in its development. A variety of germline and somatic mutations are associated with cervical cancer. However, genomic data derived from these mutations have not been extensively utilized for the development of repurposed drugs for cervical cancer.

View Article and Find Full Text PDF

Metastatic triple-negative breast cancer has a poor prognosis and poses significant therapeutic challenges. Until recently, limited therapeutic options have been available for patients with advanced disease after failure of first-line chemotherapy. The aim of this review is to assess the current evidence supporting second-line treatment options in patients with metastatic triple-negative breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!