The cerebral hemispheres of amphibians display paired dorsal and ventral striatum (commonly referred to as striatum proper and nucleus accumbens, respectively). Each striatal region is proposed to be closely associated with a pallidal structure located caudal to it to form a striatopallidal system. In the present study, afferents to the dorsal and ventral striatopallidal systems of the fire-bellied toad (Bombina orientalis) were investigated using the neuronal tracer biocytin. A quantitative analysis of the topographical distribution of afferent neurons from the thalamus and posterior tubercle/ventral tegmentum was emphasised. The main results show that inputs to the two striatopallidal systems originate from distinct dorsal thalamic nuclei, with dorsal and ventral striatopallidal afferent neurons favouring strongly the lateral/central and anterior thalamic nuclei, respectively. However, afferent neuron distribution in the dorsal thalamus does not differ in the rostrocaudal axis of the brain. Afferent neurons from the posterior tubercle and ventral tegmentum, on the other hand, are organised topographically along the rostrocaudal axis. About 85 % of afferent neurons to the dorsal striatopallidal system are located rostrally in the posterior tubercle, while 75 % of afferent neurons to the ventral striatopallidal system are found more caudally in the ventral tegmentum. This difference is statistically significant and confirms the presence of distinct mesostriatal pathways in an amphibian. These findings demonstrate that an amphibian brain displays striatopallidal systems integrating parallel streams of sensory information potentially under the influence of distinct ascending mesostriatal pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-013-0615-6 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.
Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).
Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.
J Neurochem
January 2025
Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia.
GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.
View Article and Find Full Text PDFBMC Ophthalmol
January 2025
Glaucoma Service, Farabi Eye Hospital, Tehran University of Medical Sciences, Qazvin Square, Tehran, Iran.
Background: To compare structural and vascular parameters between advanced pseudoexfoliation glaucoma (PXG) and primary open-angle glaucoma (POAG).
Methods: One hundred and six eyes of 81 patients were enrolled in this cross-sectional study. All patients underwent complete ophthalmic examination and measurement of the thickness of the peripapillary retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC).
J Comp Neurol
January 2025
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
Direction selectivity is a fundamental feature in the visual system. In the retina, direction selectivity is independently computed by ON and OFF circuits. However, the advantages of extracting directional information from these two independent circuits are unclear.
View Article and Find Full Text PDFPLoS One
January 2025
UCL Institute of Ophthalmology, University College London, London, United Kingdom.
The outer retina (OR) is highly energy demanding. Impaired energy metabolism combined with high demands are expected to cause energy insufficiencies that make the OR susceptible to complex blinding diseases such as age-related macular degeneration (AMD). Here, anatomical, physiological and quantitative molecular data were used to calculate the ATP expenditure of the main energy-consuming processes in three cell types of the OR for the night and two different periods during the day.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!