Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report on atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) investigations of single crystals of the spin crossover complex {Fe(pyrazine)[Pt(CN)4]} across the first-order thermal spin transition. We demonstrate for the first time that the change in spin state can be probed with sub-micrometer spatial resolution through various topographic features extracted from AFM data. This original approach based on surface topography analysis should be easy to implement to any phase change material exhibiting sizeable electron-lattice coupling. In addition, AFM images revealed specific topographic features in the crystals, which were correlated with the spatiotemporal evolution of the transition observed by far-field and near-field optical microscopies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3nr03030j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!